
Document type:   International Standard 
Document subtype:    
Document stage:   (50) Approval 
Document language:   E 
 
C:\workspace\projects\org.hl7.v3.dt\iso\ISO 21090 Healthcare Datatypes.doc  STD Version 2.2 
 

ISO TC 215/SC     
Date:   2009-09-14 

ISO/FDIS 21090:2009(E) 

ISO TC 215/SC /WG 2 

Secretariat:   ANSI 

Health Informatics — Harmonized data types for information interchange 

Informatique de santé — Types de données harmonisées pour une interchangeabilité d'informations 



ISO/FDIS 21090:2009(E) 

ii © ISO 2009 – All rights reserved 

 

Copyright notice 

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted 
under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be 
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, 
photocopying, recording or otherwise, without prior written permission being secured. 

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's 
member body in the country of the requester. 

ISO copyright office 
Case postale 56  CH-1211 Geneva 20 
Tel.  + 41 22 749 01 11 
Fax  + 41 22 749 09 47 
E-mail  copyright@iso.org 
Web  www.iso.org 

Reproduction may be subject to royalty payments or a licensing agreement. 

Violators may be prosecuted.



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved iii 
 

Contents Page 

Foreword ............................................................................................................................................................ iv 

Introduction ......................................................................................................................................................... v 

1 Scope ...................................................................................................................................................... 1 

2 Conformance ......................................................................................................................................... 1 
2.1 Introduction ............................................................................................................................................ 1 
2.2 Direct conformance ............................................................................................................................... 2 
2.3 Indirect conformance ............................................................................................................................ 4 

3 Normative references ............................................................................................................................ 5 

4 Terms and definitions ........................................................................................................................... 6 

5 Abbreviations ......................................................................................................................................... 8 

6 Datatypes overview ............................................................................................................................... 8 
6.1 What is a datatype? ............................................................................................................................... 8 
6.2 Definitions of datatypes ........................................................................................................................ 9 
6.3 Datatype names and re-use of common datatype names ................................................................. 9 
6.4 Mapping to this datatypes specification ........................................................................................... 10 
6.5 Conformance with ISO/IEC 11404 ...................................................................................................... 10 
6.6 Reference to UML 2 ............................................................................................................................. 10 
6.7 Modelling of datatypes ........................................................................................................................ 11 

7 Datatypes.............................................................................................................................................. 15 
7.1 General properties ............................................................................................................................... 15 
7.2 Top level model ................................................................................................................................... 20 
7.3 Basic datatypes ..................................................................................................................................... 1 
7.4 Text and binary datatypes .................................................................................................................. 12 
7.5 Coded datatypes (terminology) ......................................................................................................... 27 
7.6 Identification and location datatypes ................................................................................................ 40 
7.7 Name and address datatypes ............................................................................................................. 51 
7.8 Quantity datatypes .............................................................................................................................. 73 
7.9 Collections Of datatypes .................................................................................................................. 102 
7.10 Continuous set datatypes................................................................................................................. 117 
7.11 Uncertainty Datatypes ....................................................................................................................... 137 
7.12 Structured text ................................................................................................................................... 140 

Annex A (normative)  XML representation .................................................................................................... 163 

Annex B (normative)  UML support types ..................................................................................................... 166 

Annex C (informative)  RM-ODP viewpoint mappings.................................................................................. 169 

Annex D (informative)  HL7 V3 Abstract Data Types mapping .................................................................... 170 

Annex E (informative)  Schema for XML representation .............................................................................. 177 

Bibliography .................................................................................................................................................... 178 



ISO/FDIS 21090:2009(E) 

iv © ISO 2009 – All rights reserved 

 

Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 21090 was prepared by Technical Committee ISO/TC 215, Health informatics. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved v 
 

Introduction 

Assistance from the Infrastructure And Messaging Committee in HL7, and the support of Connecting For 
Health have been instrumental in the preparation of this International Standard, which is a shared document 
between Health Level Seven (HL7) and ISO, and has been produced according the terms of the agreement 
between HL7, CEN and ISO (JIC, see http://www.global-e-health-standards.org/), which ensures that the 
content is fully available through ISO, CEN and HL7 publication channels. 

http://www.global-e-health-standards.org/




FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 21090:2009(E) 

 

© ISO 2009 – All rights reserved 1 
 

Health Informatics — Harmonized data types for information 
interchange 

1 Scope 

This International Standard 

 provides a set of datatype definitions for representing and exchanging basic concepts that are commonly 
encountered in healthcare environments in support of information exchange in the healthcare 
environment; 

 specifies a collection of healthcare related datatypes suitable for use in a number of health-related 
information environments; 

 declares the semantics of these datatypes using the terminology, notations and datatypes defined in 
ISO/IEC 11404, thus extending the set of datatypes defined in that standard; 

 provides UML definitions of the same datatypes using the terminology, notation and types defined in 
Unified Modeling Language (UML) version 2.0; 

 specifies an XML (Extensible Markup Language) based representation of the datatypes. 

The scope of this standard is is based on a mix of requirements gathered primarily from HL7 Version 3 and 
ISO/IEC 11404, and also from CEN/TS 14796, ISO 13606 (all parts), and past ISO work on healthcare 
datatypes. 

This International Standard can offer a practical and useful contribution to the internal design of health 
information systems but it is primarily intended to be used when defining external interfaces or messages to 
support communication between them. 

2 Conformance 

2.1 Introduction 

An information processing product, system, element or other entity may conform to this International Standard 
either directly, by using datatypes specified in this International Standard in a conforming manner, or indirectly, 
by mappings from internal datatypes used by the entity to the datatypes specified in this International 
Standard. 

NOTE The term "information processing entity" is used as defined in Clause 4 (see 4.10), which is consistent with 

how it is used in ISO/IEC 11404:2007 Clause 4. Specifically, this definition includes applications as well as other 
standards and specifications. 

http://informatics.mayo.edu/wiki/index.php?title=%3F%3F&action=edit
http://informatics.mayo.edu/wiki/index.php?title=%3F%3F&action=edit


ISO/FDIS 21090:2009(E) 

2 © ISO 2009 – All rights reserved 

 

2.2 Direct conformance 

2.2.1 Direct conformance definition 

An information processing entity which conforms directly to this International Standard shall: 

a) specify which of the datatypes specified in Clause 7 are provided by the entity and which are not; 

b) define the value spaces of the healthcare datatypes used by the entity to be identical to the value spaces 
specified by this International Standard; 

c) specify to what extent the value spaces of the datatypes are constrained for use within it‘s own context; 

d) define, to the extent that the entity provides operations other than movement or translation of values, 
operations on the healthcare datatypes which can be derived from, or are otherwise consistent with the 
characterizing operations specified by this International Standard; 

e) represent these datatypes using the Extensible Mark-up Language (XML) representation described herein, 
when the datatypes are represented in XML; 

f) optionally publish a formal conformance profile making these statements clear, or reference such a profile 
published by some other information processing entity. 

The requirements above prohibit the use of a type-specifier defined in this International Standard to designate 
any other datatype (but see the note concerning the scope of the datatype names in 6.2). They make no other 
limitation on the definition of additional datatypes in a conforming entity. For instance, a directly conforming 
information processing entity could continue to use ISO/IEC 11404 general purpose datatypes in addition to 
these healthcare datatypes. 

Requirement c) does not require all characterizing operations to be supported and permits additional 
operations to be provided. The intention is to permit the addition of semantic interpretation to the datatypes, as 
long as it does not conflict with the interpretations given in this International Standard. A conflict arises only 
when a given characterizing operation could not be implemented or would not be meaningful, given the entity 
provided operations on the datatype. 

Examples of entities that could conform directly are language definitions or healthcare specifications whose 
datatypes, and the notation for them, are those defined herein. In addition, a software tool or application 
package might support these datatype syntax and definition facilities precisely. 

Information processing entities claiming direct conformance with this International Standard do not always 
need to use the datatypes defined in this International Standard to represent their concepts. I.e. just because 
an address datatype is defined here does not mean that this address datatype must always be used for 
representing addresses. However the type defined within this International Standard shall be used where the 
context requires interoperability using these datatypes. 

Information processing entities claiming direct conformance with this International Standard may further 
constrain the value domain of any of the datatypes within their context of use. The conformance statement 
must make clear how constraints are applied within the information processing entity, and how values that do 
not conform to the imposed constraints are handled. 

If a conforming entity extends the operational definitions presented here, those definitions can be assessed for 
consistency by these criteria. Where operations have the same name as the operation defined within this 
International Standard, they are consistent if the operation can be invoked with the same parameters to return 
the same result. The operation may be defined with different parameter lists, in which case it is considered a 
different operation. 

Information processing entities claiming direct conformance are not required to call any or all of the types 
defined in this International Standard "types". Other terms such as "data structures" may be used. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 3 
 

2.2.2 Conformance statements 

When an information processing entity claims direct conformance to this International Standard, it should 
make a conformance statement. 

It is anticipated that other standards bodies will make conformance statements with regard to this International 
Standard both in a general sense (e.g. as organizational endorsements), and in the sense of adopting these 
datatypes for a use in a particular standard. In addition, it is anticipated that certain countries publish profiles 
of these datatypes either on an advisory or normative basis. Finally, vendors and purchasers of healthcare 
applications may well find use in creating, sharing and publishing conformance statements. 

This International Standard makes no rules about either the form of the statement, or how it is published, but it 
should be clearly and formally presented, and made available to all interested parties associated with the 
scope of the information processing entity. 

In addition to specifying that conformance statements shall contain formal statements pertaining to a) to d) in 
2.2.1, this International Standard makes additional rules about what they shall or should say or may choose to 
say. 

Direct conformance statements shall: 

a) define which character set and encoding applies; the default character set is Unicode (see 6.7.5) with any 
valid Unicode encoding; 

b) if an alternative mechanism for providing history and audit data is provided, define how it maps to the 
history and audit information on data types (see 7.1.3); 

c) make clear how attribute and collection cardinality are specified (see 7.1.5); 

d) define how the attributes nullFlavor, updateMode and flavorId on ANY are managed (see 7.3.3); 

e) if quantities are used, make clear exactly how and when the QTY attributes expression, originalText and 
the various uncertainties are used; 

f) make clear what methods may be used to provide alternative definitions for discrete set uniqueness 
(see 7.9.3); 

g) if the structured documents types are used, document the scope of the document context and clearly 
define how references within this document context are resolved (see 7.12); 

h) specify to what degree the XML format is adopted and define the namespace that is used 
(see Clause A.1). 

Direct conformance statements should: 

i) define defaulting rules for language (see 7.4.2.3.7); 

j) declare what languages are supported in the QTY.expression property (see 7.8.2.3.1); 

k) describe which codes may be used in QSC.code (see 7.10.8.3); 

l) if the structured documents types are used, define how version tracking works in the contexts where it is 
used (see 7.12.12.2.1). 

Direct conformance statements may also: 

m) define additional data type flavours or additional authorities for the definition of flavours (see 6.7.6); 

n) make additional arrangements for the use of derived data and the DER nullFlavor (see 7.1.4); 



ISO/FDIS 21090:2009(E) 

4 © ISO 2009 – All rights reserved 

 

o) define how the controInformationRoot+Extension properties on HXIT are used (see 7.3.2.3.4); 

p) clarify how telecommunication and postal addresses are selected for particular purposes (see 7.6.2.3.2); 

q) define the code systems to which different name and address part types are bound (see 7.7.3.6 and 
7.7.5.6). 

2.3 Indirect conformance 

2.3.1 Indirect conformance definition 

An information processing entity which conforms indirectly to this International Standard shall: 

a) provide inward mappings from its internal datatypes to the healthcare datatypes conforming to the 
specifications of Clause 7 and outward mappings in reverse; 

b) specify for which of the datatypes in Clause 7 an inward mapping is provided, for which an outward 
mapping is provided and for which no mapping is provided; 

c) specify whether the XML representation described herein is used when the datatypes are represented in 
XML, or optionally to provide an alternative namespace for the XML representation; 

d) optionally publish a formal conformance profile making these statements clear, or reference one 
published by some other information processing entity. 

Examples of entities which could conform indirectly are healthcare specifications, applications, software 
engineering tools and other interface specifications, and many other entities that have a concept of datatype 
and an existing notation for it. 

Standards for existing healthcare specifications yet to be proposed as ISO standards are expected to provide 
for indirect conformance rather than direct conformance. 

Information processing entities claiming indirect conformance with this International Standard do not always 
need to use the datatypes defined in this International Standard to represent the concepts I.e. just because an 
address datatype is defined here does not mean that this address datatype must always be used for 
representing addresses. 

Information processing entities claiming indirect conformance with this International Standard may further 
constrain the value domain of any of the datatypes within their context of use. The conformance statement 
must make clear how constraints are applied within the information processing entity, and how values that do 
not conform to the imposed constraints are handled. 

Information processing entities claiming indirect conformance are not required to call any or all of the types 
defined in this International Standard "types". Other terms such as "data structures" may be used. 

2.3.2 Conformance statements 

When an information processing entity claims indirect conformance to this International Standard, it should 
make a conformance statement. 

This International Standard makes no rules about either the form of the statement, or how it is published, but it 
should be made available to all interested parties associated with the scope of the information processing 
entity. 

In addition to specifying that conformance statements shall contain formal statements pretaining to points a) to 
d) in 2.3.1, this International Standard makes additional rules about what they shall or should say or may 
choose to say. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 5 
 

Indirect conformance statements shall: 

a) define which character set and encoding applies; the default is Unicode (see 6.7.5); 

b) make clear what equality definitions apply and how (see 7.1.2); 

c) make clear how attribute and collection cardinality are specified, if relevant (see 7.1.5); 

d) if the structured documents types are used, document the scope of the document context and clearly 
define how references within this document context are resolved (see 7.12). 

Indirect conformance statements should: 

e) define defaulting rules for language (see 7.4.2.3.7); 

f) declare the mapping, if any exists, between W3C Digital Signature and alternate implementations 
(see 7.4.5.1). 

Indirect conformance statements may also: 

g) define additional data type flavours or additional authorities for the definition of flavours (see 6.7.6); 

h) make additional arrangements for the use of derived data and the DER nullFlavor (see 7.1.4); 

i) define how the controInformationRoot+Extension properties on HXIT are used (see 7.3.2.3.4); 

j) clarify how telecommunication and postal addresses are selected for particular purposes (see 7.6.2.3.2); 

k) define the code systems to which different name and address part types are bound (see 7.7.3.6 and 
7.7.5.6); 

l) declare what languages are supported in the QTY.expression property (see 7.8.2.3.1); 

m) describe which codes may be used in QSC.code (see 7.10.8.3); 

n) if the structured documents types are used, define how version tracking works in the contexts in which it is 
used (see 7.12.12.2.1). 

3 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO/IEC 4217:2008/Cor.1:2008, Codes for the representation of currencies and funds 

ISO/IEC 8601:2004, Data elements and interchange formats — Information interchange — Representation of 
dates and times 

ISO/IEC 8824:1990, Information technology — Open Systems Interconnection — Specification of Abstract 

Syntax Notation One (ASN.1)1) 

ISO/IEC 11404:2007, Information technology — General-Purpose Datatypes 

                                                      

1) Since replace by ISO/IEC 8824, parts 1 to 4. 



ISO/FDIS 21090:2009(E) 

6 © ISO 2009 – All rights reserved 

 

ISO/IEC 22220, Health informatics — Identification of subjects of health care 

IETF RFC 1738 — Uniform Resource Locators (URL) 

IETF RFC 1950 — ZLIB Compressed Data Format Specification version 3.3 

IETF RFC 1951 — DEFLATE Compressed Data Format Specification version 1.3 

IETF RFC 1952 — GZIP file format specification version 4.3 

IETF RFC 2045 — Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message 
Bodies 

IETF RFC 2046 — Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types 

IETF RFC 2396 — Uniform Resource Identifiers (URI): Generic Syntax 

IETF RFC 2806 — URLs for Telephone Calls2) 

IETF RFC 3066 — Tags for the Identification of Languages 

FIPS PUB 180-1 — Secure Hash Standard 

FIPS PUB 180-2 — Secure Hash Standard3) 

Open Group, CDE 1.1 — Remote Procedure Call specification, Appendix A 

HL7 V3- Data Types — Abstract Specification (R2) 

Unified Code for Units of Measure — http://aurora.regenstrief.org/ucum 

W3C XML Digital Signature Recommendation — http://www.w3.org/TR/xmldsig-core/ 

4 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

4.1 
attribute 
characteristic of an object that is assigned a name and a type 

NOTE The value of an attribute can change during the lifetime of the object. 

4.2 
class 
descriptor for a set of objects with similar structure, behaviour and relationships 

4.3 
code 
concept representation published by the author of a code system as an entity of that code system 

4.4 
code system 
managed collection of concept identifiers, usually codes, but sometimes more complex sets of rules and 
references 

                                                      

2) Since replaced by IET RFC 3966. 

3) Revision of FIPS PUB 180-1. 

http://www.w3.org/TR/xmldsig-core/


ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 7 
 

NOTE Code systems are often described as collections of uniquely identifiable concepts with associated 

representations, designations, associations and meanings. 

EXAMPLES ICD-9, LOINC and SNOMED 

4.5 
concept 
unitary mental representation of a real or abstract thing; an atomic unit of thought 

NOTE 1 It should be unique in a given code system. 

NOTE 2 A concept can have synonyms in terms of representation and it can be a primitive or compositional term. 

4.6 
conformance 
fulfillment of a specified set of requirements; adherence of information processing entity to the requirements of 
one or more specific specifications or standards 

4.7 
datatype 
set of distinct values, characterized by properties of the values, and by operations on the values 

4.8 
enumeration 
datatype whose instances are a set of user-specified named literals 

NOTE The literals have a relative order but no algebra is defined on them. 

4.9 
generalization 
taxonomic relationship between a more general class, interface or concept and a more specific class, 
interface or concept 

NOTE 1 Each instance of the specific element is also an instance of the general element. Thus, the specific element 
has all the features of the more general element. 

NOTE 2 The more specific element is fully consistent with the more general element and contains additional 
information. An instance of the more specific element can be used where the more general element is allowed. 

4.10 
information processing entity 
anything that processes information and contains the concept of datatype, including other standards, 
specifications, data handling facilities and services, etc. 

4.11 
inheritance 
mechanism by which more specific elements incorporate structure and behaviour of more general elements 

4.12 
interface 
specifier for the externally-visible operations of class, without specification of internal structure 

4.13 
invariant 
rule about the features of a class which must always be true 

4.14 
operation 
service that an instance of the class may be requested to perform 



ISO/FDIS 21090:2009(E) 

8 © ISO 2009 – All rights reserved 

 

NOTE An operation has a name and a list of arguments with assigned names and types, and returns a value of the 

type specified. 

4.15 
specialization 
taxonomic relationship between a more general class, interface or concept and a more specific class, 
interface or concept where the more specific entity adds new features or redefines existing features by 
constraining their possible behaviours. 

4.16 
string character set 
character set used in all string content through out the standard 

4.17 
valueSet 
uniquely identifiable set of valid concepts, where any concept can be tested to determine whether or not it is a 
member of the value set 

NOTE A concept representation can be a single concept code or a post-coordinated combination of codes. 

5 Abbreviations 

The following abbreviations are used for the terms defined in this International Standard and its annexes. 

 CEN Comité Européen de Normalisation (European Committee for Standardization) 

 CNE Coded No Exceptions 

 CWE Coded With Exceptions 

 HL7  Health Level Seven Inc. 

 IETF Internet Engineering Task Force 

 OID  Object Identifier 

 OMG Object Management Group 

 UML Unified Modelling Language 

 W3C World Wide Web Consortium 

 XML Extensible Mark-up Language 

6 Datatypes overview 

6.1 What is a datatype? 

In ISO/IEC 11404, a "datatype" is defined as a set of distinct values, characterized by properties of those 
values, and by operations on those values (ISO/IEC 11404:2007, 3.12). 

A datatype consists of three main features: 

 a value space; 

 a set of properties; 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 9 
 

 a set of characterizing operations. 

Generally the definitions of the scope of datatypes revolve around one or other of the following notions. 

 Immutability (the properties of the datatype cannot change, instead a new instance is created: datatypes 
have no lifecycle). 

 The relationship between equality and identity (if two datatypes are equal they are the same instance). 

 Coherency of a single concept (each datatype should represent a single concept space). 

Since the application of these concepts to the healthcare information domain and the implications of these for 
the scope of datatypes are inherently a matter of perspective, the selection criterion for the datatypes defined 
in this International Standard is based on the set that has emerged from the debates held within the various 
stakeholder standards bodies that define healthcare information standards. Since healthcare information 
standards and specifications are expected to provide mappings to this International Standard, the process has 
been deliberately inclusive. These other standards may choose to represent these datatypes with other more 
complex structures, but should explain how to translate between these structures and the datatypes defined 
here. 

6.2 Definitions of datatypes 

This International Standard defines a set of named datatypes. Each datatype defined in this International 
Standard is given both a short name and a long name. The formal name of the datatype is the short name. 
Each datatype is defined in two different ways: 

 in terms of the datatype specification language and types defined in ISO/IEC 11404; 

 in UML using primitive types taken from the UML kernel package. 

The ISO/IEC 11404 definition is provided to ensure continuity between this International Standard and the 
ISO/IEC 11404 General purpose datatypes, while the UML definition is provided to foster software-driven 
implementation of these datatypes. The ISO/IEC 11404 definitions are semantic and abstract in nature, while 
the UML definitions are concrete structural definitions. This International Standard is focused on providing 
structural concrete definitions, so the UML definitions take precedence over the ISO/IEC 11404-based 
definitions, which are provided in the interests of continuity with ISO/IEC 11404. 

The datatypes defined in this International Standard are an implementation of the HL7 V3 Abstract Data 
Types (R2); it is possible to implement the exchange of information based on the HL7 V3 Abstract Data Type 
definitions using the datatypes defined in this International Standard. Annex B demonstrates how these 
datatypes implement the HL7 V3 Abstract Data Types (R2). 

The datatypes defined in this International Standard are not restricted to the features described by the HL7 V3 
Abstract Data Types. The HL7 V3 Data Types Abstract specification is not required in order to make use of 
these datatypes. The semantic definitions in the HL7 V3 Abstract Data Types may be consulted for further 
useful information to help implementors understand the use of these datatypes. 

6.3 Datatype names and re-use of common datatype names 

Some of the names of these datatypes bear superficial similarity to similar datatypes defined in other 
specifications. For instance, this International Standard defines a type REAL and there is a type Real in the 
ISO/IEC 11404 specification, and a type called Real in the UML kernel (see also the note in B.2.7 concerning 
the use of floating value types). There are many specifications, languages, and implementation technologies 
that declare similar types to either the underlying real types or the REAL defined in this specification, with a 
profusion of names around the common theme of Real, Float, Decimal or Double. 



ISO/FDIS 21090:2009(E) 

10 © ISO 2009 – All rights reserved 

 

This International Standard does not attempt to redefine or replace the definition of real in ISO/IEC 11404 or 
UML. Instead, it defines a new type that wraps the underlying "primitive" type is defined, building on the 
functionality of the underlying type and fitting it into the overall architectural framework. 

The types BL, ST, INT, REAL, SET, LIST, and BAG defined in this specification use this "primitive type 
wrapper" pattern.  

To avoid name conflicts between the datatypes defined in this International Standard and any other 
specification, implementors should use some form of namespacing to ensure that the names of the datatypes 
do not cause confusion, perhaps by prefixing the names with some string constant in implementation 
environments that do not support proper namespacing of types. 

6.4 Mapping to this datatypes specification 

Like ISO/IEC 11404, this International Standard anticipates that these datatypes will be used within other 
specifications. These specifications must specify how the datatypes and features described with this 
International Standard are implemented within the specification. Datatypes may be adopted and used directly, 
or they may be mapped to other datatypes or structures in different places, or they may not be supported at all. 

Each specification that uses these datatypes should publish a document or section describing the mapping, 
and providing assistance for implementors to convert data between specifications. 

6.5 Conformance with ISO/IEC 11404 

This International Standard asserts direct conformance with ISO/IEC 11404. Although this International 
Standard can be considered to provide support for all the general purpose datatypes, only the following types 
are actually used in this International Standard: 

 boolean; 

 enumerated; 

 characterstring; 

 integer; 

 Real; 

 class; 

 set; 

 bag; 

 sequence; 

 octet. 

The healthcare datatypes are class constructs built using these base primitive types. The healthcare 
datatypes are partially defined using the datatype definition language defined in ISO/IEC 11404. Since this 
language does not provide for generalization/specialization relationships, and since the 
generalization/specialization relationships are an important part of the definition of the datatypes, the 
datatypes cannot be fully defined in the ISO/IEC 11404 language. 

6.6 Reference to UML 2 

This International Standard defines the datatypes using the UML. The datatypes are all specializations of the 
UML Classifier, and the types are defined in this International Standard, or are built on the following UML 
Kernel types as defined in the OCL 2 specification: 

 enumeration; 

 boolean; 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 11 
 

 integer; 

 string; 

 collection; 

 sequence; 

 set; 

 bag. 

6.7 Modeling of datatypes 

6.7.1 Introduction 

This International Standard represents the relationship among individual datatypes using the facilities of the 
Unified Modelling Language (UML) version 2. This modelling technique provides a means whereby: 

 properties that are common across groups of datatypes can be expressed once; 

 one datatype within a specification may be substituted by another. 

6.7.2 Attribute definitions 

Unless otherwise specified, the default value for all attributes and associations is nil. 

6.7.3 Generalization/specialization 

This International Standard defines a series of class representations of healthcare datatypes. Within these 
classes, a number of generalization/specialization relationships are defined. Generalization has the normal 
meaning associated with it as defined in the UML standard, and any instance of a class may be replaced by 
an instance of a specialization of that class. However some of the specifications that rely upon this 
International Standard may make additional constraints concerning which specializations are permissible in a 
given context. 

6.7.4 Enumeration definitions 

This International Standard defines a number of attributes that have enumerated sets of possible values. Each 
value in an enumeration represents a concept in a terminology. Within the terminology there may be 
generalization/specialization relationships. In this International Standard, the enumerations are defined in 
three ways: 

 a list of codes as an ISO/IEC 11404 enumeration; 

 a list of codes as a UML enumeration definitions; 

 a table defining the enumeration in the narrative of this standard. 

The table has four rows: Level, Code, Title, Definition. 

Level 

The level of the concept in the hierarchy of the terminology. 
All concepts marked with the same level and not separated by a concept with a level of lower 
numerical magnitude are siblings, and all concepts following after another concept with a 
higher level value are children of that concept. 

Code 

The code that represents the concept. 
This is used in the enumerations and to identify the concept in any representation or 
exchange of data in this International Standard. The Code is indented to represent the 
hierarchy of the terminology. 



ISO/FDIS 21090:2009(E) 

12 © ISO 2009 – All rights reserved 

 

Title A short human readable description of the concept. 

Definition A short definition of the intention of the concept. 

The hierarchy in the enumeration is an important part of the specification. Although the enumerations are 
defined as linear lists within ISO/IEC 11404 and the UML definitions, any information processing entity that 
asserts direct or indirect conformance with this International Standard must respect the relationships when 
evaluating meaning within the enumeration. In addition, this International Standard will occasionally refer to 
the relationships within the narrative when defining the outcome of some operations. 

Except in the case of the AddressPartType enumeration, the hierarchies represent 
generalization/specialization (also known as subsumption). In these hierarchies, a child code represents a 
more specialized meaning of its parent code. The AddressPartType enumeration is compositional in nature; 
here codes represented as child codes of another code represent parts of the concept represented by the 
parent code. 

For example, here is a subset of the table that defines the NullFlavor Enumeration 

NullFlavor Enumeration. OID: 2.16.840.1.113883.5.1008 

Level Code Description Definition 

1  NI No information 

The value is exceptional (missing, omitted, incomplete, improper). 
No information as to the reason for being an exceptional value is 
provided. This is the most general exceptional value. It is also the 
default exceptional value. 

2    UNK Unknown A proper value is applicable, but not known. 

3      ASKU 
Asked but 
unknown 

Information was sought but not found (e.g., patient was asked but 
did not know). 

4        NAV 
Temporarily 
unavailable 

Information is not available at this time but it is expected that it will 
be available later. 

3      NASK Not asked This information has not been sought (e.g., patient was not asked). 

2    MSK Masked 

There is information on this item available but it has not been 
provided by the sender due to security, privacy or other reasons. 
There may be an alternate mechanism for gaining access to this 
information. 
Warning: Using this nullflavor does provide information that may be 
a breach of confidentiality, even though no detailed data are 
provided. Its primary purpose is for those circumstances where it is 
necessary to inform the receiver that the information does exist 
without providing any detail. 

2    NA Not applicable 
No proper value is applicable in this context (e.g., last menstrual 
period for a male). 

 

In this table, all the concepts listed below NI are indented and marked with a higher level, so they are all 
specializations of NI. Codes ASKU, NAV and MASK are all specializations of the concept UNK, and codes 
UNK, MSK and NA are siblings, specializations of NI but not of anything else. So the eumeration value ASKU 
implies that the enumeration value UNK is also applicable. 

All the enumerations in this International Standard are maintained by HL7 unless otherwise specified. Revised 
tables are published on a regular basis. The values defined in this International Standard will not have their 
meaning changed, though they may be deprecated. When these revised tables are published by HL7 or ISO, 
new enumeration values may be pre-adopted by trading partner agreement prior to the issuance of a new 
version of this International Standard. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 13 
 

The OID for the HL7 codeSystem is published for reference, and to assist when passing these enumerated 
codes to terminology sub-systems that are likely to use the OID to refer unambiguously to the code. 

6.7.5 Strings and character encoding 

This International Standard refers to both the ISO/IEC 11404 characterstring, and the UML Kernel String. For 
the purpose of this International Standard, these types define the same functionality: an immutable sequence 
of known length containing zero or more logical characters. This type is hereafter referred to in the narrrative 
of this standard as simply "String". 

NOTE 1 Both ISO/IEC 11404 and the UML kernel define additional characterizing operations which might be useful for 

implementors, and which can be considered to apply, but are not directly of interest to this International Standard.  

NOTE 2 This International Standard also declares a wrapper type for String called ST, which adds additional 

functionality related to how the notion of an immutable sequence of characters fits into the overall framework of healthcare 
datatypes with their associated notions having to do with uncertainty, unreliability and conformance. 

The String datatype contains a sequence of logical characters, which is different from carrying a sequence of 
bytes that encodes a sequence of logical characters. 

NOTE 3 Implementors should consider the difference between the two concepts carefully when implementing these 

datatypes. 

By default, the String type contains Unicode characters. Information processing entities claiming direct or 
indirect conformance should mandate that the unicode character set be used in all String types throughout this 
International Standard. 

However, there are a few character sets that are not perfectly mapped into Unicode. For this reason, some 
countries or regulatory domains which may mandate some other character set than Unicode. In these 
contexts, standards and specifications that claim direct or indirect conformance will support use of character 
sets other than Unicode and should be explicit about which character sets are supported, and how they are 
represented. 

NOTE 4 There is an obvious implementation cost to choosing to use something other than Unicode. Regulatory 

domains that choose to use something other than Unicode will generally have considered this issue at length. 

The character set for any given implementation environment, whether Unicode or something else, is referred 
to throughout this International Standard as "the String Character Set―. 

Any given encoding that serves the implementation of the primitive string type in a particular character set 
may include control bytes that alter the interpretation of the text. It is assumed that any operations performed 
take this into consideration. However as the operations described in this International Standard are enacted 
upon the logical sequence of characters, this issue is not discussed any further. 



ISO/FDIS 21090:2009(E) 

14 © ISO 2009 – All rights reserved 

 

6.7.6 Flavours 

In addition to the basic datatypes, this International Standard also defines a number of datatype flavours. Data 
type flavours are not independent datatypes in their own right – they are not defined as UML classes, nor as 
XML schema types. Instead, datatype flavours describe common constraint patterns on existing datatypes. As 
such, datatype flavours cannot introduce new attributes, new codes, default values, or any new defining 
material. Datatype flavours may only make rules constraining how the existing features of a class may be 
used. 

Since datatype flavours may not introduce new features or meaning, and since they do not exist as 
independent classes in their own right, information processing entities do not need to understand a flavour in 
order to process the information correctly. For this reason, any information processing entity declaring direct 
or indirect conformance to this International Standard is able to define datatype flavours or reference flavours 
defined by some other authority, as long as the standard naming rules are followed. These are: 

 names shall consist of a sequence of valid characters, namely letters, digits, underscores and periods; 
other non-whitespace unicode characters may be used at the descretion of the information processing 
entity; 

 names shall begin with the name of the type from which they are derived, followed by a period, a 
namespace, another period and then some additional valid characters; 

 namespaces are used to prevent flavours described by different sources from having conflicting names; 
the namespace should either be an ISO 3166-1 country code, the applicable HL7 Realm identifier, or a 
DNS name. 

Examples: 

TS.CA.BIRTH Rules for dates of birth published by the relevant 
Canadian Authority 

TS.NPFIT.NHS_NUMBER NHS Number flavour (fixed root) published by NPFIT 
in the UK 

ED.AU.KESTRAL.DOCUMENT Rules for acceptable document format for the 
Australian company "Kestral" 

Datatype flavours defined in this International Standard do not need or have a namespace. 

Applications should not reject an due to a flavour reference that is not known to the application. Applications 
may reject an instance that references a flavou to which the instance does not conform, but are not required to 
do so. 

The flavours defined in this International Standard do not need to be implemented by or used in association 
with information processing entities declaring direct or indirect conformance to this International Standard. 

6.7.7 Examples 

Examples are provided for most datatypes. The examples serve to illustrate various points related to how the 
datatypes are used. 

The examples are all given in XML, following the form documented in Annex A. The examples are presented 
assuming that the XML document/element that contains them has a charset of UTF-8. Most examples include 
an xsi:type making their type explicitly clear, but this is generally not necessary where the type is fully 
specified by the context of use and/or schema. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 15 
 

The discussion in the examples may provide references to content published by standard development 
organizations other than ISO or HL7. These reference materials are not a normative part of this International 
Standard. 

7 Datatypes 

7.1 General properties 

7.1.1 Immutability 

Datatypes are conceptually immutable. They are defined with no lifecycle, with no operations that allow an 
instance of an existing datatype to change. However the datatypes are defined in this International Standard 
as classes with attributes, which allows for the value of the datatype to be modified after it is created. 

Although this may be useful for implementation, it is not the intent of this International Standard to define types 
that are semantically mutable. Specifications that use these datatypes must consider the types themselves 
immutable. In particular, implementors must be diligent to prevent the subtle bugs that may arise from allowing 
the datatype properties to change in one context while they are in use in other contexts. 

7.1.2 Equality 

There are two aspects to equality – that two data values refer to the same instance, or that two data values 
represent the same semantic concept. In principle, for data types, these are synonymous, but implementation 
concerns mean that the difference cannot be ignored. 

In UML/OCL there are two properties that evaluate these two meanings of equality. The first is "=", which 
evaluates whether these two values are the same instance, and the second is "equals", which evaluates 
whether these types represent the same concept. For OCL primitive types, such as integer, the two properties 
return the same value. For UML Classifiers, the results may be different. 

In this International Standard, the equality criteria for each datatype are specified. This specifies the second 
form of equality: do these two data values represent the same concept? These definitions of equality are 
carefully constructed to meet the criterion that equal operations must be reflexive, symmetric, and transitive, 
thus: 

reflexive x equals x must be true 

symmetric If x equals y is true, then y equals x must be true  

transitive If x equals y, and y equals z, then x must equal z 

Because this form of equality is inherently a semantic notion, the equality definitions may depend on the 
semantics of the type, and they may not be simple to evaluate. Information processing entities claiming direct 
conformance with this International Standard shall conform to these equality definitions. Information 
processing entities claiming indirect conformance shall make clear what equality definitions apply. 

Datatype flavours do not change the definition of equality. 

7.1.3 History and audit trail 

The base type HXIT defines properties for specifying a validTime during which the value is, was or will be 
valid, and for specifying the identity of an event that was associated with any changes in value (known as 
control information). 

The validTime is not an audit trail for tracking when particular systems associated a particular version of data 
with a concept; rather, it is used to make statements about the time period during which the data item was a 
correct description of the concept. For instance, in many countries a person may change his or her name by 
marriage or other legal means, so a particular name may only be associated with a person for a limited time. 
Similarly, a person's addresses and contact details may change as they move. 



ISO/FDIS 21090:2009(E) 

16 © ISO 2009 – All rights reserved 

 

The control information is the identity that links to some event in an information system which is associated 
with ―control‖ information concerning the change to this data value on a system. This information specifically 
relates to the association of data with its concept in systems. The control information reference can be used to 
build an audit trail of values across multiple exchanges between systems. See 7.3.2 for more details. 

The various specifications that make use of this International Standard may provide alternative mechanisms 
for specifying this history and audit data, particularly the part relating to system audit trails. In such cases, the 
specification will declare, usually in its conformance statement, how such information is handled and 
potentially mapped into the properties defined in this International Standard. 

Datatypes are immutable – their value cannot change. The concept of valid time and control act does not 
apply within a data type. For this reason, whenever a data type is re-used as the type of an attribute of 
another data type, the invariants will specify that the valid time and control act attributes shall be null. 

7.1.4 Null and NullFlavor 

The base type ANY introduces a concept called nullFlavor. Though the nullFlavor concept has some 
relationship with the UML/OCL null, it is not the same thing, and the relationship and differences between the 
two must be understood to properly implement this International Standard. 

Any instance of a class defined in this International Standard may be null as defined in UML and OCL. A null 
instance is an instance of the type OclVoid, and conforms to all types. It carries no other information other 
than the fact it is null. This International Standard uses the ocl operations oclIsDefined and oclIsUndefined to 
make constraints on the use of this form of null in attributes of the types defined in this International Standard. 

Alternatively, an instance of the class may be created as an exceptional value, and its nullFlavor can be set to 
one of the NullFlavors. In this case, the value represents an exception to the normal value domain of the type. 
This does not mean that an instance representing exceptional value is not bound by the rules defined in this 
International Standard; it must still meet the invariants defined herein. However many of the rules are different 
for exceptional values as they represent semantic exceptions to the normal data. All exceptional values must 
have a nullFlavor, and the nullFlavor provides more information as to why the value is an exception to the 
rules. The opposite of an exceptional value is a proper value - a value with no nullFlavor. 

NullFlavor Enumeration. OID: 2.16.840.1.113883.5.1008 

1  NI No information 

The value is exceptional (missing, omitted, incomplete, 
improper). No information as to the reason for being an 
exceptional value is provided. This is the most general 
exceptional value. It is also the default exceptional value.  

2    INV Invalid 
The value as represented in the instance is not a member of 
the set of permitted data values in the constrained value 
domain of a variable. 

3      OTH Other 
The actual value is not a member of the set of permitted data 
values in the constrained value domain of a variable. (e.g., 
concept not provided by required code system). 

4        PINF Positive infinity Positive infinity of numbers. 

4        NINF Negative infinity Negative infinity of numbers. 

3      UNC Unencoded 
No attempt has been made to encode the information 
correctly but the raw source information is represented 
(usually in originalText). 

3      DER Derived 
An actual value may exist, but it must be derived from the 
provided information (usually an expression is provided 
directly). 

2    UNK Unknown A proper value is applicable, but not known. 

3     ASKU Asked but Information was sought but not found (e.g., patient was 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 17 
 

unknown asked but didn‘t know). 

4       NAV 
Temporarily 
unavailable 

Information is not available at this time but it is expected that 
it will be available later. 

3      NASK Not asked 
This information has not been sought (e.g., patient was not 
asked). 

3      QS Sufficient quantity 

The specific quantity is not known, but is known to be non-
zero and is not specified because it makes up the bulk of the 
material. E.g. 'Add 10 mg of ingredient X, 50 mg of ingredient 
Y, and sufficient quantity of water to 100 ml.'; the null flavour 
would be used to express the quantity of water 

3       TRC Trace 
The content is greater than zero, but too small to be 
quantified. 

2    MSK Masked 

There is information on this item available but it has not been 
provided by the sender due to security, privacy or other 
reasons. There may be an alternate mechanism for gaining 
access to this information. 
Warning: Using this null flavour does provide information that 
may be a breach of confidentiality, even though no detailed 
data are provided. Its primary purpose is for those 
circumstances where it is necessary to inform the receiver 
that the information does exist without providing any detail. 

2    NA Not applicable 
No proper value is applicable in this context (e.g., last 
menstrual period for a male). 

 

Since an instance of the type must be created in order to carry a nullFlavor, it can have values assigned to its 
other attributes. This is different from the UML/OCL null in which no instance exists and therefore there can be 
no nonNull attributes. If a nullFlavor is present, other attributes may be populated, but there is no requirement 
that any information processing entity make any use of these values, except that the following cases should 
be properly understood where applicable: 

 NullFlavor OTH on CD; 

 NullFlavors NINF and PINF on Interval low and high boundaries respectively; 

 NullFlavor UNK on an II with an extension and no root. 

ISO/IEC 11404 defines the concept of a sentinel value, which is a value in the value space of the type that 
does not share in all the characterizing operations of the type. Though there are some conceptual similarities 
between nullFlavors and sentinel values, instances of type ANY with nullFlavors are not sentinel values. The 
characterizing operations still apply, though the result of these characterizing operations will be some flavour 
of null. This is like the OCL null behaviour, behavioural similarity is why the property is named ―nullFlavor‖. 

Unless specifically documented otherwise, all operations defined in this International Standard behave in the 
same fashion: 

 If the operation is performed on a UML/OCL null value, the result is a UML/OCL null. 

 If the operation is performed on a value with a nullFlavor. 

 If the operation takes no parameters, it will return a nullFlavor. Usually the nullFlavor will be NA, but 
other nullFlavors may be appropriate, depending on the semantics of the nullFlavors. When 
performing operations upon nullFlavored values, the semantic meaning of the nullFlavor must be 
considered. 



ISO/FDIS 21090:2009(E) 

18 © ISO 2009 – All rights reserved 

 

 If the operation takes parameters, and any of the parameters is a UML/OCL null, the result will be a 
UML/OCL null 

 Where operations involve values that are null or have nullFlavors, the resulting value will be null or 
have a nullFlavor unless the semantics of the data types and nullFlavors dictate otherwise. There are 
a few rules about specific operations in this International Standard 

 If the operation is performed on a proper value. 

 If the operation takes parameters, and any of the parameters is a UML/OCL null, the result will be a 
UML/OCL null. 

 Where operations involve values that are null or have nullFlavors, the resulting value will be null or 
have a nullFlavor unless the semantics of the data types and nullFlavors dictate otherwise. There are 
a few rules about specific operations in this International Standard. 

 Otherwise, the operation will perform as described. 

Some specific operations deviate from these rules. These deviations are documented for each operation. 

One special case arises with equality comparisons of various nullFlavored values. Two values that have 
nullFlavor NotApplicable are considered equal. While NINF cannot be equal to NINF and PINF cannot be 
equal to PINF, since the actual value is not known, NINF and PINF are clearly not equal. In other cases, it is 
generally not safe for the comparison to return anything but a nullFlavor – usually NI. 

A value of any type with a nullFlavor of NI and where all the other attributes are null or meet this rule 
recursively is semantically equivalent with a UML/OCL null, and these forms may be interconverted if desired. 
Most simple attributes are declared using a UML or OCL type such as String, and these may be converted to 
the complex equivalent, such as ST, with a nullFlavor of NI, if desired. 

Because an attribute may be either null or a nullFlavor, many of the invariants take the form (x.oclIsDefined 
and x.isNotNull) implies {condition}. For some invariants it is not necessary to make this rule since the result of 
null (the value of x.isNotNull if x is actually null) implies anything is null, and the invariant will fail gracefully, but 
for others the null must be protected against in order for the correct outcome in all cases. 

The nullFlavor concept provides a general framework for handling incomplete data which is often encountered 
in healthcare information collection, use and analysis. The nullFlavor property may also play a special role in 
conformance frameworks in specifications that make use of these types. 

Not all the nullFlavors can be used with all the different types. The nullFlavors PINF and NINF may only be 
used with specific types (INT, REAL, PQ and TS). The nullFlavor UNC may only be used with types that have 
an originalText (CD, QTY, QSET, and specializations). The nullFlavors QS and TRC may only be used with 
PQ. 

The two nullFlavors OTH and INV with their other specializations draw a distinction between the actual value 
and the value as represented in the instance. Some of the datatypes may be used to provide a representation 
of a value which requires subsequent transformation to generate the real value. For instance, an expression 
may be provided that will generate a value that is in the required value domain of the instance, or an uncoded 
CD value – with just an originalText attribute. INV, DER and UNC offer the possibility that some transform – 
either based on additional information or knowlege – may generate a valid value, whereas OTH with its 
specializations is an assertion that it is believed that no better value exists. This invites questions of 
confidence – how confident is the source that no better information exists, how sure is the processor that it 
believes the source is correct? However these questions cannot be resolved. For this reason, the assertion 
should not be taken as absolute, but as a statement of intent from the source. 

Although INV and it‘s specializations represent exceptional values in their context of use, they are only 
exceptional within the parameters defined by this International Standard. Actual values shall always conform 
to the rules defined by this International Standard. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 19 
 

The nullFlavor DER shall only be used where the context of use makes clear how the actual value can be 
derived from the provided information. This International Standard provides QTY.expression (see 7.8.2.3.1), 
with support for deriving values. Other information processing entities may make other arrangements for the 
use of DER in their conformance statements. 

NOTE Most often, the correct nullFlavor to use is NI, and there need not be any burden on implementors with regard 
to choosing or persisting the correct nullFlavor. Other than some technical requirements that are clearly document in this 

International Standard regarding the use of the nullFlavors NA, INV, DER, OTH, PINF and NINF, whenever it is not clear 
which nullFlavor is applicable, implementors should be comfortable using the nullFlavor NI. In particular, if a user does not 

respond to an input field in a data collection procedure, or if the data is missing for some unknown reason, NI would be the 
most appropriate nullFlavor to choose. 

EXAMPLES 

Use Case NullFlavor of Choice 

User does not respond to input on a screen form NI 

Source is not configured to encode plain text input to required 

codeSystem 
UNC 

Source is unable to encode this particular plain text input to the 

required codeSystem because it cannot match the text  
OTH 

Patient is unconscious and cannot provide name NAV 

The system does not support this element NI 

No proper dosage is provided, but an expression is provided so the 

destination system can calculate the proper dosage from the patient‘s 

weight 

INV 

The patient does not have an address – No Fixed Place of Abode NA 

Reporting the duration of an adverse reaction that is ongoing using 

an IVL<TS> 

IVL.high = NA because the 

reaction is ongoing – the 

concept of high does not apply 

Reporting the duration of an adverse reaction using an IVL<TS> 

when it is not known whether the reaction has terminated 

IVL.high = UNK – we do not 

know  

The source system is responding to a query for patient details, and 

has decided not to include the address because of applicable security 

and/or privacy policy. 

MSK 
NOTE Normal security/privacy policy is not to inform the information 

recipient that information has been suppressed, for good reason. However 

there are a few cases where workflow reasons dictate that it is necessary to 

inform the user that information has been denied. The MSK nullFlavor is 

provided for these minor cases. 

 

7.1.5 Conformance 

Conformance as discussed in Clause 2 is concerned with whether information processing entities conform to 
this International Standard. "Conformance" is also used to refer to the application of rules to the datatypes by 
information processing entities at the point of use. 

Any information processing entity that uses these datatypes may constrain their use by making some human 
language narrative statements concerning how they are used or by using some formal language statement in 
a processible language such as OCL. In addition, this International Standard recognises two additional means 
by which the possible values of the datatypes can be constrained, called "mandatory" and "cardinality―. 



ISO/FDIS 21090:2009(E) 

20 © ISO 2009 – All rights reserved 

 

Any external attribute that is assigned a type from this International Standard may also have a nominal flag 
"mandatory― set to true. If the context of use sets this flag to true, the instance shall contain a valid data value 
that is not null, has no nullFlavor, and conforms to all the constraints stated in this International Standard and 
any additional constraints on the value domain stated in the model. If this flag is not set to true, and the 
instance does not meet the constraints specified in the constraining model, the instance shall either be 
labelled using some form of nullFlavor (though other information may still be provided), or shall be omitted 
completely, in which case the default value (usually NullFlavor NI) applies. 

The context of use may also apply a cardinality to an attribute. A cardinality consists of a minimum value, 
specified as a whole number, and a maximum value, specified as a whole number or "*" for no limit. The 
cardinality is usually presented as [minimum value]..[maximum value], e.g. 0..1 or [1..*]. The meaning of the 
cardinality differs between collection based attributes and other attributes. 

For attributes with a collection type (COLL and its specializations), the cardinality specifies how many items 
may be in the collection. A cardinality maximum value of * means that there is no limit to the number of items 
in the collection. 

NOTE 1 This does not imply that information processing entities are required to handle infinitely large collections of 

data, but the specification itself places no limit on the size of the collection). The minimum value specifies how many items 
must be in the collection. 

NOTE 2 In the case of a mandatory collection, the collection shall contain at least one non-null (not null, and no 
nonFlavor) item. 

For other attributes, the only cardinalities that may be applied are 0..0, 0..1, and 1..1. Cardinality of  0 means 
that the attribute is not to be represented in the instance, and has an implicit nullFlavor of NI. Cardinality of 1 
means that the attribute has a value, though the value may be a nullFlavor unless the attribute is also 
mandatory. 

A mandatory attribute shall have a minimum cardinality of 1 or more. 

NOTE 3 This use of cardinality is a little different to the standard use of cardinality on attributes in UML. In UML, if an 
attribute is assigned a type of DSET(CS) and a cardinality of 2..3, this means that there must be 2 or 3 sets of CS. These 

uses are not incompatible; both forms of cardinality may be applied in any information processing entity that claims direct 
or indirect conformance. Which form is intended should be made clear in the documentation. 

7.2 Top level model 

For convenience and reference, Figure 1 provides an overview of the datatypes defined in this International 
Standard as a UML diagram. See Figure 1. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 21 
 

 

Figure 1 — Top level model





FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 21090:2009(E) 

 

© ISO 2009 – All rights reserved 1 
 

7.3 Basic datatypes 

7.3.1 Overview 

Basic datatypes that provide infrastructural support for specific datatypes that are defined in subsequent 
sections. See Figure 2. 

 

Figure 2 — Basic datatypes 

7.3.2 HXIT 

7.3.2.1 Description 

Abstract and private – this datatype is not for use outside the datatypes in this International Standard. 

Information about the history of this value: period of validity and a reference to an identified event that 
established this value as valid. 

Because of the way that the types are defined, a number of attributes of the datatypes have values with a type 
derived from HXIT. In these cases the HXIT attributes are constrained to null. The only case where the HXIT 
attributes are allowed within a datatype is on items in a collection (DSET, LIST, BAG, HIST). 

The use of these attributes is generally subject to further constraints in the specifications that make use of 
these types. 



ISO/FDIS 21090:2009(E) 

2 © ISO 2009 – All rights reserved 

 

7.3.2.2 ISO/IEC 11404 Syntax 

 type HXIT = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring 

 ) 

7.3.2.3 Attributes 

7.3.2.3.1 validTimeLow : String: The time that the given information became or will become valid.  

This is not the time that any system first observed the value, but the time that the actual value became correct (i.e. when a 

patient changes their name). 

7.3.2.3.2 validTimeHigh : String: The time that the given information ceased or will cease to be correct. 

Both validTimeLow and validTimeHigh must be valid timestamps using the format described in 7.8.13.3.1 
(TS.value). 

7.3.2.3.3 controlInformationRoot : Uid: The root of the identifier of the event associated with setting the 
datatype to its specified value.  

7.3.2.3.4 controlInformationExtension : String: The extension of the identifier of the event associated 
with setting the datatype to its specified value. 

Together, the root and extension identify a particular record of a real world event that may supply additional 
information about the value such as who made the change, when it was made, why it was made, what system 
originated the change. These attributes exist because sometimes this information is required, but the value is 
being represented in an external context that does not contain a proper relationship to the control information 
for the value itself. The record need not be directly or easily resolvable. Conformance statements may make 
additional statements about these two properties, or about how such a reference should be resolved. 

7.3.2.4 Equality 

There is no equality definition for HXIT, since it is an abstract and private type. The attributes of HXIT 
(validTimeLow, validTimeHigh, controlInformationRoot, controlInformationExtension) never participate in the 
determination of equality of specializations of HXIT. 

7.3.2.5 Invariants 

 if a controlInformationExtension is provided, a ControlInformationRoot must also be provided 

OCL for invariants: 

 def: let noHistory : Boolean =  

     validTimeLow.oclIsUndefined and  

     validTimeHigh.oclIsUndefined and  

     controlInformationRoot.oclIsUndefined and      

     controlInformationExtension.oclIsUndefined 

 

inv "extension requires root":    

     controlInformationExtension.oclIsDefined implies     

     controlInformationRoot.oclIsDefined 

 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 3 
 

7.3.2.6 Example 

<example  

  xsi:type="ST" value="This is some content"  

  validTimeLow="200506011000" validTimeHigh="200507031500" 

    controlInformationRoot="1.2.3.4.5.6">   

</example> 

In this example, the value of the example attribute "This is some content" was valid from the 1st June 2005 
10:00am to 3rd July 2005 3:00 pm. The value was set to "This is some content" by an event which is uniquely 
identified by the OID of 1.2.3.4.5.6.  Some information system somewhere – and how to determine that should 
be in an applicable conformance profile – will be able to resolve this OID to a reference that may be used to 
determine the user who entered this data into the system. 

7.3.3 ANY 

7.3.3.1 Description 

Specializes HXIT 

Defines the basic properties of every data value. This is conceptually an abstract type, meaning that no proper 
value can be just a data value without belonging to any concrete type. Every public concrete type is a 
specialization of this general abstract DataValue type.  

However exceptional values (nullFlavored values) may be of type ANY, except for the exceptional values that 
imply the nullFlavor INV, since this requires a type to be meaningful. Note that not all nullFlavors may be used 
with the type ANY (see section 7.1.4 for more details) 

7.3.3.2 ISO/IEC 11404 Syntax 

 type ANY = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring) 

 ) 

The appropriate use of all three of the attributes on ANY (in addition to the four properties inherited from HXIT) 
is intimately bound to the specification with which the datatypes are used, and generally that specification will 
need to establish special ways to control their use. Information Processing Entities claiming direct or indirect 
conformance shall make it clear how the use of these three attributes is controlled. 

7.3.3.3 Attributes 

7.3.3.3.1 nullFlavor : NullFlavor: If the value is not a proper value, indicates the reason. 

Though the nullFlavor concept has some relationship with the UML/OCL null, it is not the same thing, and the 
relationship and differences between the two must be understood to properly implement this International 
Standard. For further discussion, see 7.1.4 (Null and NullFlavor). 

NOTE nullFlavor includes the concept of a UML null value, and also includes potentially fully populated instances that 
do not conform to the requirements placed on the instance (also known as "exceptional instances―). Both nonNull and 

nullFlavored values shall always be valid according to the rules expressed in this International Standard. 



ISO/FDIS 21090:2009(E) 

4 © ISO 2009 – All rights reserved 

 

If populated, the value of this attribute shall be taken from the HL7 NullFlavor code system. The current values 
are:  

NullFlavor Enumeration. OID: 2.16.840.1.113883.5.1008 

1  NI No information 

The value is exceptional (missing, omitted, incomplete, 
improper). No information as to the reason for being an 
exceptional value is provided. This is the most general 
exceptional value. It is also the default exceptional value. 

2    INV Invalid 
The value as represented in the instance is not a member of 
the set of permitted data values in the constrained value 
domain of a variable. 

3      OTH Other 
The actual value is not a member of the set of permitted data 
values in the constrained value domain of a variable. (e.g., 
concept not provided by required code system). 

4        PINF Positive infinity Positive infinity of numbers. 

4        NINF Negative infinity Negative infinity of numbers. 

3      UNC Unencoded 
No attempt has been made to encode the information 
correctly but the raw source information is represented 
(usually in originalText). 

3      DER Derived 
An actual value may exist, but it must be derived from the 
provided information (usually an expression is provided 
directly). 

2    UNK Unknown A proper value is applicable, but not known. 

3      ASKU 
Asked but 
unknown 

Information was sought but not found (e.g., patient was 
asked but didn‘t know). 

4        NAV 
Temporarily 
unavailable 

Information is not available at this time but it is expected that 
it will be available later. 

3      NASK Not asked 
This information has not been sought (e.g., patient was not 
asked). 

3      QS Sufficient quantity 

The specific quantity is not known, but is known to be non-
zero and is not specified because it makes up the bulk of the 
material."Add 10 mg of ingredient X, 50 mg of ingredient Y, 
and sufficient quantity of water to 100 ml." The null flavour 
would be used to express the quantity of water. 

3      TRC Trace 
The content is greater than zero, but too small to be 
quantified. 

2    MSK Masked 

There is information on this item, available but it has not 
been provided by the sender due to security, privacy or other 
reasons. There may be an alternate mechanism for gaining 
access to this information. 
Warning: Using this null flavour does provide information that 
may be a breach of confidentiality, even though no detailed 
data are provided. Its primary purpose is for those 
circumstances where it is necessary to inform the receiver 
that the information does exist without providing any detail. 

2    NA Not applicable 
No proper value is applicable in this context (e.g., last 
menstrual period for a male). 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 5 
 

ISO/IEC 11404 Syntax for nullFlavor attribute 

 type NullFlavor = enumerated (NI, INV, OTH, NINF, PINF, UNC, DER, UNK, 

ASKU, NAV, QS, NASK, TRC, MSK, NA) 

Some of the null flavours are not generally applicable to all datatypes. The nullFlavors NINF, PINF, QS, and 
TRC shall only be used in association with QTY types. The nullFlavor UNC shall only be used with any type 
that has an originalText, and when UNC is used the originalText property shall be populated. When the 
nullFlavor DER is used, an expression shall be provided. 

7.3.3.3.2 updateMode : UpdateMode: This property allows a sending system to identify the role that the 
attribute plays in processing the instance that is being represented. 

If populated, the value of this attribute shall be taken from the HL7 UpdateMode code system. The current 
values are: 

UpdateMode Enumeration. OID: 2.16.840.1.113883.5.57 

1  A Add  
The item was (or is to be) added, having not been present 
immediately before. (If it is already present, this may be 
treated as an error condition.) 

1  D Remove  
The item was (or is to be) removed (sometimes referred to 
as deleted). If the item is part of a collection, delete any 
matching items. 

1  R Replace  
The item existed previously and has been (or is to be) 
revised. (If an item does not already exist, this may be 
treated as an error condition.) 

1  AR Add or replace  
The item was (or is to be) either added or replaced. No 
assertion is made as to whether the item previously existed. 

1  N No change 
There was (or is to be) no change to the item. This is 
primarily used when this element has not changed, but other 
attributes in the instance have changed. 

1  U Unknown  
It is not specified whether or what kind of change has 
occurred to the item, or whether the item is present as a 
reference or identifying property. 

1  K Key 
This item is part of the identifying information for the object 
that contains it. 

ISO/IEC 11404 Syntax for updateMode attribute 

type UpdateMode = enumerated (A, D, R, AR, N, U, K) 

If no updateMode is provided, there is no information as to how this information updates any existing 
information. The descriptions above use the word ―matching‖. For the purposes of the datatypes, this means 
the equality operations defined in this International Standard (in other contexts where this code system is used, 
―matching‖ may have other meanings). 

NOTE UpdateMode does not affect the semantics or behaviour of the datatype itself, but may affect the behaviour of 
systems processing objects containing instances of the datatype. 



ISO/FDIS 21090:2009(E) 

6 © ISO 2009 – All rights reserved 

 

7.3.3.3.3 flavorId : Set(String): Signals the imposition of one or more sets of constraints on the datatype. 
The sole purpose of specifying that a constraint that has been used to further constrain the datatype is to 
support validation of the instance: a validation engine can look up the rules expressed for the specified 
flavours and confirm that the instance conforms to the rules for the flavour. No other processing should 
depend on the content of the flavour attribute. 

No other semantic or computational use shall depend on the value of this property. If this value is populated, 
the datatype flavour(s) shall be a valid constraint on the type of the value. 

There is further discussion about the use of data type flavours and flavorId in Clause A.3. 

7.3.3.4 Equality 

By default, equals is determined as specified below. Selected specializations of ANY override equals to 
specify how semantic equality is evaluated for the type. Each type clearly documents how equality is 
determined. 

The following table summarises the relationship between null, nullFlavor, and equals: 

other 
this 

null nullFlavor proper value 

Null null null Null 

nullFlavor null nullFlavora nullFlavora 

proper value null nullFlavora proper valueb 
a First common generalization of both nullFlavors. 
b Unless specifically defined for a specialization, use the general equality algorithm. 

The general equality algorithm says that two values are equal if they have the same type, and if all the 
attributes not defined on HXIT or ANY are also equal. If any of the attribute‗s equality is null or a nullFlavor 
then the result is null or has the most common nullFlavor. 

NOTE See the comments on comparing nullValues in 7.1.4 (Null and NullFlavors). 

The equality operation is reflexive, symmetric, transitive, and consistent, and implementations shall conform to 
these requirements. The equality rules defined in this International Standard conform to these requirements. 

This operation conforms to the general rules for operations and nullFlavors defined in 7.1.4 (Null and 
NullFlavor), but the rules are described here in depth, for greater clarity. In particular, the rules are transitive 
within the equals operation: if any of the attributes or collection items have a nullFlavor (other than the 
nullFlavor NA), the result will become a value of that nullFlavor, unless specifically defined otherwise. 

Equals does not override the = operation defined in OCL, nor should it override the normal equivalent for the 
OCL = operation in any implementation platform. It defines semantic equality. 

NOTE UpdateMode and flavorId are always ignored when testing for equality. 

7.3.3.5 Invariants 

 an instance may only be of type ANY (not a specialization) if it has a nullFlavor, and not if the nullFlavor 
implies INV 

OCL for invariants: 

  def: let isNull : Boolean = nullFlavor.oclIsDefined 

  def: let isNotNull : Boolean = not isNull 

  def: let noUpdate : Boolean = updateMode.oclIsUndefined 

  def: let noUpdateOrHistory() : Boolean = noUpdate and  

     noHistory 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 7 
 

  def: let noUpdateOrHistory(member : ANY) : Boolean =  

     member.oclIsDefined implies member.noUpdate and member.noHistory 

  def: let invalid : Boolean = (nullFlavor = NullFlavor.INV or  

       nullFlavor = NullFlavor.OTH or nullFlavor = NullFlavor.PINF or  

       nullFlavor = NullFlavor.NINF or nullFlavor = NullFlavor.UNC or  

       nullFlavor = NullFlavor.DER) 

           

  inv "no ANY unless nullFlavored": (isNotNull or invalid) implies 

         not oclIsTypeOf(ANY) 

7.3.3.6 Operations 

7.3.3.6.1 equals(other : ANY) : BL: Defines whether the this data value is considered semantically equal 
to another data value – that they carry the same meaning. See 7.3.3.4 for a discussion on how equality is 
determined. 

7.3.3.6.2 isNull() : Boolean: Defines whether this type has a nullFlavor or not. 

This operation is an exception from the normal rules for operations and nullFlavors: it will return true if the 
value has a nullFlavor, and false if it does not. 

7.3.3.6.3 notNull() : Boolean: Defines whether this type doesn't have a nullFlavor or it does.  

This operation is an exception from the normal rules for operations and nullFlavors: it will return false if the 
value has a nullFlavor, and true if it does not. 

7.3.3.7 Examples 

7.3.3.7.1 Simple true value 

<example xsi:type="ANY" nullFlavor="UNK"/> 

The value is unknown, and we do not even know what type the value might be (not fixed by context, and not 
known in the instance). 

7.3.3.7.2 Null and NullFlavor 

This is a simple CD representing a coded concept (see 7.5.2) 

<example code="784.0" codeSystem="2.16.840.1.113883.6.42"> 

  <displayName value="Headache"/> 

</example> 

This provides a code, a codeSystem, and a displayName. All the other attributes are null. In terms of meaning, 
the following instance is identical: 

<example code="784.0" codeSystem="2.16.840.1.113883.6.42"> 

  <displayName value="Headache"/> 

  <originalText nullFlavor="NI"/> 

</example> 

This has the same meaning because if an attribute is null, all we can say is that we have no information 
concerning it, nor do we know why we have no information about it, which is the same statement as 
nullFlavor.NI: we have no information about why we are not a proper type.  

In the same sense, this also has the same meaning: 



ISO/FDIS 21090:2009(E) 

8 © ISO 2009 – All rights reserved 

 

<example code="784.0" codeSystem="2.16.840.1.113883.6.42"> 

  <displayName value="Headache"/> 

  <translation nullFlavor="NI"/> 

</example> 

In this case, there is a clear difference: a translation exists. However there is no information about the 
translation, nor why there is no information. So the outcome in terms of meaning is the same.  

This example shows that it is valid to provide additional information along with a nullFlavor: 

< example code="784.0" codeSystem="2.16.840.1.113883.6.42"> 

  <displayName value="Headache"/> 

  <translation nullFlavor="NI" codeSystem="2.16.840.1.113883.6.96"/> 

</example> 

This is a slightly different statement: that there is no information about the translation of this code into 
SNOMED-CT. There are cases where this information is of significance, though they are not common. 

7.3.3.7.3 UpdateMode 

The principle use for updateMode is in tightly coupled messaging systems. A tightly coupled message system 
is one where a limited number of applications have tight trading partner agreements, and well understood and 
managed information flows. In these circumstances, it may be advantageous to agree that instead of sending 
all available information in each message, only information about what has changed in each transaction is 
sent in each message. Doing this has the advantage of greatly saving on implementation costs for both 
sender and receiver, while raising the prospect of information loss or scrambling if the message flows get out 
of sequence. UpdateMode is required to properly implement information about what has changed in a 
transaction. 

In more general use, such as clinical documents and EHRs, the use of such transaction based processing is 
inappropriate, so the updateMode attribute should generally be fixed to null in these contexts.  

The following examples provide some examples for how updateMode might be used in a tightly coupled 
messaging system. These examples should not taken as proscriptive guidance for how updateMode and the 
associated transaction-based processing should be implemented. 

The first set of examples concern a simple case where an object model has a single attribute for the birth date 
of a person, birthDate: TS. 

A user opens the patient management dialog box, and changes the patient‘s birthdate to 21st June 1975. 
Since the system already has a birth date, the existing patients birth date is being replaced. This leads to an 
instance being sent to the a target tightly coupled application that includes the following fragment: 

<birthDate value="19750621" updateMode="R"/> 

The application checks and finds that it already has a value, so replaces it with the new value. If no value 
already existed, this would indicate an error condition, though how this should be handled depends on the 
details of the local agreements in force to make this kind of processing safe. 

Later, another user opens the patient management dialog box and removes the patient's birth date. This leads 
to an instance being sent to the a target tightly coupled application that includes the following fragment: 

<birthDate nullFlavor="NI" updateMode="D"/> 

A nullFlavor is required to make the value valid, and means to delete the birth date and replace it with the 
NullFlavor NI. This is effectively the same as:  



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 9 
 

<birthDate nullFlavor="NI" updateMode="R"/> 

which means to update the birthdate to the NullFlavor NI. As seen in this instance, updateMode is not very 
useful on single instances like this. Where it becomes useful is to differentiate between information sent 
because it is changing (UpdateMode.R) from information sent to establish identity. To illustrate this, we 
assume that the trading party agreement controlling this transactionally based processing has specified that 
when updating a patient record, the patient object always includes name, gender and date of birth as 
identifying data. In this case the instance will always contain a birth date. We can mark that the birthDate 
attribute is present as an identifying rather than a changing attribute using the UpdateMode "Key": 

<birthDate nullFlavor="NI" updateMode="K"/> 

Where updateMode starts to become really useful is with maintaining lists. The following set of examples 
concern the patients contact list.  

Typical applications have different entries on the user UI for the different kind of contact details. The particular 
kinds of contact detailds that need to be supported tend to be rather a moving target in the information age, so 
this International Standard implements the actual contact details as a typed list (increasingly many 
applications are following suit). In this hypothetical case, there is input fields for home telephone number, 
mobile telphone number, fax number and e-mail address, and the attribute is contacts: DSET(TEL). A typical 
patient record might generate a contact list like this in a non-transactional environment: 

<contacts> 

  <item value="tel:+11015551234" use="H" capabilities="voice"/> 

  <item value="tel:+11995556787" use="MC" capabilities="voice sms"/> 

  <item value="tel:+11015551235" capabilities="fax"/> 

  <item value="mailto:example@example.com"/> 

</contacts> 

In a tightly coupled messaging system using transactional processing based on updateMode, this full list 
would rarely be sent. Instead, only bits of it are sent. 

If a user entered the patient management dialog box and changed the users home telephone number, the 
following instance would be sent: 

<contacts> 

  <item value="tel:+11015551234" use="H"  

      capabilities="voice" updateMode="D"/> 

  <item value="tel:+12315559876" use="H"  

      capabilities="voice" updateMode="A"/> 

</contacts> 

The receiving application compares it‘s information with the instance. If it cannot find the existing number 
+11015551234, that is an error to be handled according to local agreements. If it can, it deletes it, and adds 
the new number. It might be tempting to send this instance instead: 

<contacts> 

  <item value="tel:+12315559876" use="H"  

      capabilities="voice" updateMode="R"/> 

</contacts> 

with the instruction to replace the existing number. However, which number should be replaced? There‘s no 
answer, except that matching is based on equality – so this says to replace the home number +12315559876 
with the home number +12315559876. 

For this reason, it is best to use Add and Delete with data type values. Replace and Add/Replace are not very 
useful since matching is done on equality – all you can say is "replace value A with value A" – of limited use. 
These are generally more useful one complex objects, but have been included in the list of legal values for 
data types to ensure that all known transactional processing use cases are met. 



ISO/FDIS 21090:2009(E) 

10 © ISO 2009 – All rights reserved 

 

There is one use case that UpdateModel.R can be used for. Since matching is done by equality, and equality 
is only based on the number itself, the following two instances have the same meaning:  

<contacts> 

  <item value="tel:+11015551234" use="H"  

      capabilities="voice" upateMode="D"/> 

  <item value="tel:+ 11015551234" use="H WP"  

      capabilities="voice fax" updateMode="A"/> 

</contacts> 

<contacts> 

  <item value="tel:+ 11015551234" use="H W"  

      capabilities="voice fax" updateMode="R"/> 

</contacts> 

Both these instances mean to replace the existing details for +12315559876 with a new set of details for 
+12315559876, updating the use and capabilities. 

7.3.4 BL 

7.3.4.1 Description 

Specializes ANY 

BL stands for the values of two-valued logic. A BL value can be either true or false, or may have a nullFlavor. 

7.3.4.2 ISO/IEC 11404 Syntax 

 type BL = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   value : boolean 

 ) 

 

With any data value potentially having a nullFlavor, the two-valued logic is effectively extended to a three-
valued logic as shown in the following truth tables:  

NOT   AND true false null  OR true false null 

True false  true true false null  true true true True  

false true  false false false false  false true false null 

null null  null null false null  null true null null 

In this table, null stands for either true null or a nullFlavor. If the null (or either of the nulls) is a true null, the 
result will be a true null. Where a boolean operation is performed upon two datatypes with different nullFlavors, 
the nullFlavor of the result shall be any common ancestor of the two different nullFlavors. The result should be 
the first common ancestor. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 11 
 

7.3.4.3 Attributes 

7.3.4.3.1 value: Boolean: The value of the BL. 

This is an example of the primitive type wrapping pattern. See 6.3 for more details. 

7.3.4.4 Equality 

Two boolean values are equal if they are nonNull and have the same value. 

7.3.4.5 Invariants 

 the BL shall have a value if it does not have a nullFlavor 

OCL for invariants: 

 inv "value if not nullFlavored": 

             isNotNull implies value.oclIsDefined 

 

7.3.4.6 Operations 

7.3.4.6.1 and(other : BL) : BL: True if both values are true. False if either value is false. Null or 
nullFlavored otherwise. 

7.3.4.6.2 or(other : BL) : BL: True if either this or other are true. False if both values are false. Null or 
nullFlavored otherwise  

7.3.4.6.3 xor(other : BL) : BL: True if either this and other are different and not null. False if both this and 
other have the same value. Null or nullFlavored otherwise. 

7.3.4.6.4 implies(other : BL) : BL: True if either this is false, or if this and other are true. False if this is 
true and other is false. Null or nullFlavored otherwise. 

7.3.4.6.5 not() : BL: False if this true, true if this is false. Null or nullFlavored otherwise.  

NOTE These operations do not always confom to the general rules for nullFlavors and operations due to the special 
nature of these logical operations. For example, (null/nullFlavored) or True is true, because it does not matter whether the 

missing value might actually be true or false, and therefore the result will be the same. Also note, from an implementors 
point of view, that these operations are strictly symmetric, and this may require some special case handling to prevent 

implementation errors when performing operations on null objects. 

7.3.4.7 Examples 

7.3.4.7.1 Simple True Value 

<example xsi:type="BL" value="true"/> 

7.3.4.7.2 Unknown Value 

<example xsi:type="BL" nullFlavor="UNK"/> 

 

 



ISO/FDIS 21090:2009(E) 

12 © ISO 2009 – All rights reserved 

 

7.3.5 BL.NONNULL 

7.3.5.1 Description: 

A flavour that constrains BL 

BL.NONNULL is a constrained instance of BL that cannot have a nullFlavor. By implication, a null can never 
be used in the place of a BL.NONNULL, though this is not a rule that can be enforced by this International 
Standard. 

7.3.5.2 Invariants 

 BL.NONNULL cannot have a nullFlavor 

OCL for invariants: 

inv "cannot have a nullFlavor": not isNull 

7.4 Text and binary datatypes 

7.4.1 Overview 

Datatypes that provide support for text and multimedia data. See Figure 3. 

 

Figure 3 — Text and binary datatypes 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 13 
 

7.4.2 ED (Encapsulated Data) 

7.4.2.1 Description 

Specializes ANY 

Data that is primarily intended for human interpretation or for further machine processing outside the scope of 
this International Standard. This includes unformatted or formatted written language, multimedia data, or 
structured information as defined by a different standard (e.g., XML-signatures). 

NOTE Encapsulated data can be present in two forms, inline or by reference. The content is the same whether it is 

located inline or remote.Inline data is communicated or moved as part of the encapsulated data value, whereas by-
reference data may reside at a different location: a URL/URI that provides reference to the information required to locate 

the data. Inline data may be provided in one of three different ways: 

 as a plain sequence of characters (value): 

 as a binary (a sequence of bytes) (data): 

 as xml content (xml). 

Content shall be provided if the ED has no nullFlavor. The content may be provided in-line (using only one of 
value, data or xml), or it may be provided as a reference.Content may be provided in-line and a reference also 
may be given; in these cases, it is expected that the content of the reference will be exactly the same as the 
in-line content. Information processing entities are not required to check this, but may regard it as an error 
condition if the content does not match. 

7.4.2.2 ISO/IEC 11404 Syntax 

 type ED = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   value : characterstring, 

   data : Sequence(Octet), 

   xml : XML, 

   reference : TEL.URL, 

   mediaType : characterstring, 

   charset : characterstring, 

   language : characterstring, 

   compression : Compression, 

   integrityCheck : Sequence(Octet), 

   integrityCheckAlgorithm : IntegrityCheckAlgorithm, 

   description : ST, 

   thumbnail : ED, 

   translation : Set(ED) 

 ) 

7.4.2.3 Attributes 

7.4.2.3.1 value : String: A simple sequence of characters that contains the content. 

If value is used, the mediatype is fixed to text/plain and the charset shall be consistent with the String 
Character Set. See 6.7.5 for more details. 



ISO/FDIS 21090:2009(E) 

14 © ISO 2009 – All rights reserved 

 

7.4.2.3.2 data : Binary: A simple sequence of byte values that contains the content. 

7.4.2.3.3 xml : XML: The content represented in plain XML form. 

A direct representation is provided for XML. This is because this International Standard includes an XML 
serialization of the data, and this xml attribute is handled specially in the serialization form. The xml data are 
not different in any semantic sense to the same data if represented in the value or data attributes. 

NOTE These three representations of the ED data –as a sequence of characters, as a sequence of bytes, or as XML 
in a native XML format – are mutually incompatible and could also have been implemented as three specializations of an 

abstract ED supertype. However doing so would complicate definition and implementation of the ED flavours and 
complicate the associated XML format (the additional of a mandatory xsi:type attribute) without significantly simplifying the 

overall implementation of ED. 

7.4.2.3.4 reference : TEL.URL : A URL the target of which provides the binary content. 

The semantic value of an encapsulated data value is the same, regardless of whether the content is present 
as inline content or just by reference. However, an encapsulated data value without inline content behaves 
differently, since any attempt to examine the content requires the data to be downloaded from the reference. 
An encapsulated data value may have both inline content and a reference. 

If data are provded in the value, data or xml attributes, the reference shall point to the same data. It is an error 
if the data resolved through the reference does not match either the integrity check, data as provided, or data 
that had earlier been retrieved through the reference and then cached. The mediatype of the ED shall match 
the type returned by accessing the reference. 

The reference may contain a usablePeriod to indicate that the data may only be available for a limited period 
of time. Whether the reference is limited by a usablePeriod or not, the content of the reference shall be fixed 
for all time. Any application using the reference shall always receive the same data, or an error. The reference 
cannot be re-used to send a different version of the same data, or different data. 

7.4.2.3.5 mediaType : Code: Identifies the type of the encapsulated data and can be used to determine a 
method to interpret or render the content.  

The IANA defined domain of media types is established by the IETF RFCs 2045 and 2046. mediaType has a 
default value of text/plain and cannot be null. If the media type is different to text/plain, the mediaType 
attribute shall be populated. 

If the content is compressed using a specified compression algorithm, the mediaType shall refer the 
mediaType of the uncompressed data, whether the data are accessed by reference or not. 

7.4.2.3.6 charset : Code: An Internet Assigned Numbers Authority (IANA) Charset Registered character 
set and character encoding for character-based encoding types. 

Whenever the content of the ED is character type data in any form, the charset property needs to be known. If 
the content is provided directly in the value attribute, then the charset shall be a known character set 
consistent with the String Character Set. Refer to 6.7.5 for more details. If the content is provided as a 
reference, and the access method does not provide the charset for the content (such as by a mime header), 
then the charset shall be conveyed as part of the ED. 

7.4.2.3.7 language: Code: The human language of the content. Valid codes are taken from the IETF 
RFC 3066. If this attribute is null, the language may be inferred from elsewhere, either from the context or 
from unicode language tags, for example. 

Conformance profiles should define defaulting rules for language for a given usage environment of this 
International Standard. 

NOTE While language attribute usually alters the interpretation of the text, the language attribute does not alter the 
meaning of the characters in the text. 

http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3066.txt


ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 15 
 

7.4.2.3.8 compression : Compression: The compression algorithm, if any, used on the raw byte data. 

If the attribute is null, the data is not compressed. Compression only applies to the binary form of the content. 

If populated, the value of this attribute shall be taken from the HL7 CompressionAlgorithm code system. The 
current values are:  

CompressionAlgorithm Enumeration. OID: 2.16.840.1.113883.5.1009 

1  DF deflate  
The deflate compressed data format as specified in IETF 
RFC 1951. 

1  GZ gzip  
A compressed data format that is compatible with the widely 
used GZIP utility as specified in IETF RFC 1952 (uses the 
deflate algorithm). 

1  ZL zlib  
A compressed data format that also uses the deflate 
algorithm. Specified as IETF RFC 1950. 

1  Z compress  
Original UNIX compress algorithm and file format using the 
LZC algorithm (a variant of LZW). Patent encumbered and 
less efficient than deflate. 

1  BZ bzip 
bzip-2 compression format. See [http://www.bzip.org/] for 
more information. 

1  Z7 Z7 
7z compression file format. See [http://www.7-

zip.org/7z.html] for more information. 

Some compression formats allow multiple archive files to be embedded within a single compressed volume. 
Applications shall ensure that the decompressed form of the data conforms to the stated media type. 

ISO/IEC 11404 Syntax for compression attribute 

 type Compression = enumeration (DF, GZ, ZL, Z, BZ, Z7) 

 

7.4.2.3.9 integrityCheck : Binary: A checksum calculated over the binary data. 

The purpose of this property, when communicated with a reference is for anyone to validate later whether the 
reference still resolved to the same content that the reference resolved to when the encapsulated data value 
with reference was created. If the attribute is null, there is no integrityCheck. 

It is an error if the data resolved through the reference does not match the integrity check.  

The integrity check is calculated according to the integrityCheckAlgorithm. By default, the Secure Hash 
Algorithm-1 (SHA-1) shall be used. The integrity check is binary encoded according to the rules of the integrity 
check algorithm. 

The integrity check is calculated over the raw binary data that is contained in the data component, or that is 
accessible through the reference. No transformations are made before the integrity check is calculated. If the 
data are compressed, the Integrity Check is calculated over the compressed data. 

http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1950.txt


ISO/FDIS 21090:2009(E) 

16 © ISO 2009 – All rights reserved 

 

7.4.2.3.10 integrityCheckAlgorithm : IntegrityCheckAlgorithm: The algorithm used to compute the 
integrityCheck value. 

If populated, the value of this attribute SHALL be taken from the HL7 IntegrityCheckAlgorithm code system. 
The current values are:  

IntegrityCheckAlgorithm Enumeration. OID: 2.16.840.1.113883.5.1010 

1  SHA1 secure hash 
algorithm - 1 

This algorithm is defined in FIPS PUB 180-1: Secure Hash 
Standard. As of April 17, 1995. 

1  SHA256 secure hash 
algorithm - 256 

This algorithm is defined in FIPS PUB 180-2: Secure Hash 
Standard. 

ISO/IEC 11404 Syntax for integrityCheckAlgorithm attribute 

 type IntegrityCheckAlgorithm = enumeration (SHA1, SHA256) 

 

7.4.2.3.11 description : ST: An alternative description of the media where the context is not suitable for 
rendering the media. 

For example, short text description of an image or sound clip, etc.; this attribute is not intended to be a 
complete substitute for the original. For complete substitutes, use the "translation" property. 

The intent of this property is to allow compliance with disability requirements such as those expressed in the 
American's with Disability Act (also known as "Section 508"), where there is a requirement to provide a short 
text description of included media in some form that can be read by a screen reader. This is similar to a very 
short thumbnail with mediaType = text/plain. 

7.4.2.3.12 thumbnail : ED: An abbreviated rendition of the full content.  

A thumbnail requires significantly fewer resources than the full content, while still maintaining some distinctive 
similarity with the full content. A thumbnail is typically used with by-reference encapsulated data. It allows a 
user to select the appropriate content more efficiently before actually downloading through the reference. 

Originally, the term thumbnail refers to an image in a lower resolution (or smaller size) than another image. 
However, the thumbnail concept can be metaphorically used for media types other than images. For example, 
a movie may be represented by a shorter clip; an audio-clip may be represented by another audio-clip that is 
shorter, has a lower sampling rate, or a glossy compression; or an abstract provided for a long document. 

A thumbnail itself shall not contain a thumbnail. 

7.4.2.3.13 translation : Set(ED): Alternate renditions of the same content translated into a different 
language or a different mediaType.  

The translations shall convey the same information, but in a different language or mediaType. Translations 
shall not contain translations. The translations do not take part in the test for equality, so shall not introduce 
any new semantics to the value. 

7.4.2.4 Equality 

Two nonNull values of type ED are equal if – and only if – their mediaType and data are equal. For those ED 
values with compressed data or referenced data, only the dereferenced and uncompressed data count for the 
equality test (the canonical content, see 7.4.2.6.1). The compression, thumbnail, translation and reference 
property themselves are excluded from the equality test. In addition the language property is excluded from 
the test (refer to 7.4.2.7.2). If the mediaType is character-based and the charset property is not equal, the 
charset property must be resolved through mapping of the data between the different character sets. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 17 
 

An ED with a plain text content may also be equal to a ST with the same character content, following the rules 
described above. 

7.4.2.5 Invariants 

 either reference, data, value or xml shall be provided if not nullFlavored, and at least one byte of data 
shall be referenced. 

 only one of data, value or xml may be specified. 

 an integrityCheckAlgorithm shall be provided and may only be provided if an integrityCheck is 
provided. 

 if a thumbnail is provided, it shall not use a reference. 

 if a thumbnail is provided, it shall not have a thumbnail. 

 compression can only be specified if data are provided as a binary or as a reference. 

 mediatype cannot be null. 

 if value is used, the mediaType is plain text. 

 a character set shall not be asserted for plain text or xml content (for plain text see 6.7.5 and 
implicitly derived for the XML content). 

 translations may not contain translations. 

OCL for invariants: 

  def: let hasValue : Boolean = value.oclIsDefined or  

         data.oclIsDefined or xml.oclIsDefined or hasReference 

  def: let hasReference : Boolean = reference.isNotNull 

   

  inv "content is required if not null": isNotNull implies  

        (hasValue and canonical.oclIsDefined) 

  inv "only one of value, data, xml": value.oclIsDefined implies  

          (data.oclIsUndefined and xml.oclIsUndefined) and 

           data.oclIsDefined implies (value.oclIsUndefined and 

                 xml.oclIsUndefined) and 

           xml.oclIsDefined implies (value.oclIsUndefined and   

                 data.oclIsUndefined) 

  inv "integrityCheckAlgorithm required": integrityCheck.oclIsDefined  

             = integrityCheckAlgorithm.oclIsDefined 

  inv "thumbnails do not use reference": thumbnail.isNotNull implies  

             not thumbnail.hasReference 

  inv "thumbnails do not have thumbnails": thumbnail.isNotNull  

             implies thumbnail.thumbnail.oclIsUndefined 

  inv "compression only on binary": compression.oclIsDefined implies  

             (data.oclIsDefined or reference.oclIsDefined) 

  inv "mediaType cannot be null": isNotNull implies  

             mediaType.oclIsDefined 

  inv "value implies mediaType is text/plain": value.oclIsDefined  

             implies mediaType = 'text/plain' 

  inv "no charset for value or xml": (value.oclIsDefined or  

             xml.oclIsDefined) implies charset.oclIsUndefined 

  inv "No History or Update Mode": noUpdateOrHistory(reference) and 

             noUpdateOrHistory(thumbnail) 

  inv "no nested translations": translation->forAll(t |  

         t.translation->isEmpty)  



ISO/FDIS 21090:2009(E) 

18 © ISO 2009 – All rights reserved 

 

7.4.2.6 Operations 

7.4.2.6.1 canonical : Binary: The sequence of bytes that is the actual data. 

NOTE 1 This sequence of bytes is retrieved from the reference if one was provided, and decompressed if appropriate.  

NOTE 2 This operation does not follow the normal rules for operations and nullFlavors because the return type cannot 
have a nullFlavor.  

NOTE 3 The result is null if the ED has a nullFlavor. 

7.4.2.7 Examples 

7.4.2.7.1 Plain text 

<example xsi:type="ED" value="this is plain text"  

    mediaType="text/plain"/> 

<example xsi:type="ED" value="this is plain text"/> 

This ED is a simple representation of plain text. The mediaType is specified as text/plain. Since the default 
value for mediatype is text/plain, the mediaType does not need to be represented in the XML, and the second 
example is also valid. The character set is not specified and in this case, the character set must not be 
present; the character set matches the encoding of the XML. 

7.4.2.7.2 Language 

<example xsi:type="ED" flavorId="ED.TEXT" value="this is plain text" 

language="en" mediaType="text/plain"/> 

<example xsi:type="ED" flavorId="ED.TEXT" value="dieses ist normaler Text" 

language="de" mediaType="text/plain"/> 

This explicitly notes that the language is English in the first case and German in the second case. If there is no 
language attribute, then the language is unknown, though it is usually safe to assume that the locally 
predominant language is appropriate. The type is assigned the flavour ED.TEXT – a text only flavour of ED. 

<example xsi:type="ED" value="this is plain text" language="en"> 

  <translation xsi:type="ED" value="dieses ist normaler Text"  

    language="de"/> 

</example> 

Here the German version is contained as a translation of the English version. 

<example xsi:type="ED" value="this is plain text" language="en-ca"> 

  <translation xsi:type="ED" value="ce ci est du texte non structuré"  

    language="fr-ca"/> 

</example> 

Localized languages may also be used, as in this French Canadian example. 

7.4.2.7.3 Binary content 

<example xsi:type="ED"> 

  <data>dGhpcyBpcyBiaW5hcnkgY29udGVudA==</data> 

</example> 

This ED contains the plain text "this is binary content". Since the mediaType is text/plain, the mediaType 
attribute doesn‘t need to be populated as this is its default value. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 19 
 

NOTE The character set of this plain text is unknown; it does not necessarily match that of the XML, and it is not safe 

to assume that it does. 

<example xsi:type="ED" charset="UTF-8"> 

  <data>dGhpcyBpcyBiaW5hcnkgY29udGVudA==</data> 

</example> 

For this reason it would generally be appropriate to define a charset when using the data element, as shown 
in this example. 

7.4.2.7.4 Reference 

<example xsi:type="ED" mediaType="image/jpg”> 

  <reference value="http://www.tempuri.org/XXXXXXXXXXX"> 

</example> 

The contents of this ED are found at the URL ―http://www.tempuri.org/XXXXXXXXXXX‖. When accessed, 

this reference returns a binary stream of bytes, the mime type of the HTTP response is ―image/jpg‖.  

NOTE The http protocol supports compression directly. The compression attribute of the ED does not refer to any 

compression applied as part of the HTTP response, but to the data once the HTTP response has been completed and 
interpreted. 

<example xsi:type="ED" mediaType="image/jpg”  

     compression="GZ"> 

  <reference value="http://www.tempuri.org/XXXXXXXXXXX"> 

</example> 

This example specifies that the result of the HTTP response is a gzipped version of the image bytes. The 
HTTP response itself could also specify that the HTTP response stream was gzipped – this would represent a 
second (redundant) compression of the data (though even the first gzip compression would be redundant 
given that the base type – JPEG – is a highly efficient representation anyway). 

7.4.2.7.5 XML content 

<example xsi:type="ED" mediaType="text/xml">      

  <data>PHBhcmVudD4NCiAgPGNoaWxkPlRoaXMgaXMgc29tZSB0ZXh0IGluI 

    HRoZSBjaGlsZDwvY2hpbGQ+ 

  DQogIFRoaXMgaXMgc29tZSB0ZXh0IGluIHRoZSBwYXJlbnQNCjwvcG 

   FyZW50Pg==</data> 

</example> 

This ED contains some XML content provided in binary form. Like the previous example, the character set of 
the XML content is unknown; it does not necessarily match that of the ED XML, and it is not safe to assume 
that it does. 

<example xsi:type="ED" mediaType="text/xml" charset="ASCII"> 

  <data>PHBhcmVudD4NCiAgPGNoaWxkPlRoaXMgaXMgc29tZSB0ZXh0IGlu 

    IHRoZSBjaGlsZDwvY2hpbGQ+ 

  DQogIFRoaXMgaXMgc29tZSB0ZXh0IGluIHRoZSBwYXJ 

    lbnQNCjwvcGFyZW50Pg==</data> 

</example> 

The charset is explicitly defined in this case. It does not need to match the XML document encoding. 



ISO/FDIS 21090:2009(E) 

20 © ISO 2009 – All rights reserved 

 

<example xsi:type="ED" mediaType="text/xml"> 

  <xml> 

    <parent> 

      <child>This is some text in the child</child> 

      This is some text in the parent 

    </parent>      

  </xml> 

</example> 

In this example, the xml is provided in-line using the xml element. The mediaType of the xml content shall be 
provided (it cannot be text/plain). The charset cannot be defined since it must match that of the xml encoding.  

7.4.2.7.6 Other content types 

<example mediaType="application/pdf" compression="GZ"> 

   <data>/9j/4AAQSkZJRgABAgEAgACAAAD/2wCEAAICAgIC 

      AQICAgICAgICAwQDAwMDAwUEBAMEBgYHBgYG 

    BgYHCAoIBwcJBwYGCAsJCQoKCwsLBwgMDQwKDAoLCwoBAgIC 

      AwMDBQMDBQoHBgcKCgoKCgoKCgoK 

    CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo 

      KCv/AABEIAg4CuQMBIQACEQED 

    EQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsBAAM 

      BAQEBAQEBAQEAAAAAAAABAgME 

    BQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1F 

      hByJxFDKBkaEII0KxwRVS0fAk 

    ... 

    CigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKAC 

      gAooAKKACigAooAKKACigAoo 

    AKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAK 

      KACigAooAKKACigAooAKKACi 

    gAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigA 

      ooAKKACigAooAKKAP//Z</data> 

</example> 

This example shows an Adobe Acrobat document that has been compressed using the GZip compression 
algorithm. 

<example mediaType="image/png"> 

   <reference value="http://example.org/xrays/128s8d9ej229se32s.png"> 

      <useablePeriod xsi:type="IVL_TS"> 

        <low value="200007200845"/> 

        <high value="200008200845"/> 

      </useablePeriod> 

   </reference> 

  <integrityCheck>EQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsB 

     AAMBAQEBAQEBAQEAAAAAAAABAgME</integrityCheck> 

   <thumbnail mediaType="image/jpeg"> 

      <data>/9j/4AAQSkZJRgABAgEAgACAAAD/2wCEAAICAgIC 

      AQICAgICAgICAwQDAwMDAwUEBAMEBgYHBgYG 

    BgYHCAoIBwcJBwYGCAsJCQoKCwsLBwgMDQwKDAoLCwoBAgIC 

      AwMDBQMDBQoHBgcKCgoKCgoKCgoK 

    CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo 

      KCv/AABEIAg4CuQMBIQACEQED 

    EQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsBAAM 

      BAQEBAQEBAQEAAAAAAAABAgME 

    BQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1F 

      hByJxFDKBkaEII0KxwRVS0fAk 

    ... 

    CigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKAC 

      gAooAKKACigAooAKKACigAoo 

    AKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAK 

      KACigAooAKKACigAooAKKACi 

    gAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigA 

      ooAKKACigAooAKKAP//Z </data> 

   </thumbnail> 

</example> 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 21 
 

This example contains a reference to an image, stored at a particular URL and available for the next month. 
An integrity check is provided for the image, as well as in inline thumbnail. 

7.4.3 ED.IMAGE 

7.4.3.1 Description 

A flavour that constrains ED 

ED.IMAGE constrains ED so that the contents must be an image. 

7.4.3.1.1 Invariants 

 the mediaType shall start with ―image/‖. 

 the content cannot be provided as a text or xml – it shall be binary and/or reference. 

OCL for invariants: 

  inv "fixed to image": mediaType.substring(0,6) = "image/" 

  inv "no text": value.oclIsUndefined 

  inv "no xml": xml.oclIsUndefined 

 

7.4.4 ED.TEXT 

7.4.4.1 Description 

A flavour that constrains ED 

ED.TEXT constrains ED so that it may only contain plain text. 

This is useful because there is sometimes a need to allow for references, but the content must be a simple 
string. In addition, no translations are allowed. 

7.4.4.2 Invariants 

 the mediaType shall be text/plain. 

 the content cannot be provided as a text or data – it shall be text and/or reference. 

 thumbnail, compression and translations are not allowed. 

OCL for invariants: 

  inv "text only": mediaType = "text/plain" 

  inv "no xml": xml.oclIsUndefined 

  inv "no data": data.oclIsUndefined 

  inv "no thumbnail": thumbnail.oclIsUndefined 

  inv "no compression": compression.oclIsUndefined 

  inv "no translations": translation->isEmpty 
 



ISO/FDIS 21090:2009(E) 

22 © ISO 2009 – All rights reserved 

 

7.4.5 ED.SIGNATURE 

7.4.5.1 Description 

A flavour that constrains ED 

ED.SIGNATURE constrains ED so that the contents must be an XML digital signature as defined by the W3C 
XML Digital Signature Recommendation (http://www.w3.org/TR/xmldsig-core/). 

NOTE If this flavour is implemented in a context where indirect conformance applies, the implementation may differ 
from the W3C XML Digital Sgnature Recommendation, and the conformance statement should declare the mapping 

between the implementation and the W3C Recommendation. 

7.4.5.2 Invariants 

 no value, data, reference, integrity check, thumbnail, compression, language or translations are 
allowed. 

 the media type shall be text/xml. 

OCL for invariants: 

  inv "no reference" : reference.oclIsUndefined 

  inv "no value" : value.oclIsUndefined 

  inv "no data" : data.oclIsUndefined 

  inv "no integrityCheck": integrityCheck.oclIsUndefined 

  inv "no thumbnail": thumbnail.oclIsUndefined 

  inv "no compression": compression.oclIsUndefined 

  inv "no language": language.oclIsUndefined 

  inv "mediaType": mediaType = "text/xml" 

  inv "no translations": translation->isEmpty 

7.4.6 ST (Character string) 

7.4.6.1 Description 

Specializes ANY 

The character string datatype stands for text data, primarily intended for machine processing (e.g., sorting, 
querying, indexing, etc.) or direct display. Used for names, symbols, presentation and formal expressions. 

A ST shall have at least one character or else have a nullFlavor. 

7.4.6.2 ISO/IEC 11404 syntax 

 type ST = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   value : characterstring, 

   language : characterstring 

   translation : Set(ST.NT) 

 ) 

http://www.w3.org/TR/xmldsig-core/


ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 23 
 

7.4.6.3 Attributes 

7.4.6.3.1 value : String: The actual content of the string. Refer to 6.7.5 for discussion on string character 
encodings. 

This is an example of the primitive type wrapping pattern. See section 6.3 for more details. 

7.4.6.3.2 language: Code: The human language of the content. Valid codes are taken from the IETF 
RFC 3066. If this attribute is null, the language may be inferred from elsewhere, either from the context or 
from unicode language tags, for example. 

Conformance profiles should define defaulting rules for language for a given usage environment of this 
International Standard. 

While language tags usually alter the meaning of the text, the language does not alter the meaning of the 
characters in the text. 

7.4.6.3.3 translation : Set(ST.NT): Alternate renditions of the same content translated into a different 
language. Translations may not contain translations. 

The translations shall convey the same information, but in a different language. The translations do not take 
part in the test for equality, so shall not introduce any new semantics to the value. 

7.4.6.4 Equality 

Two nonNull values of type ST are equal if – and only if – the sequence of characters they represent is equal 
(i.e. if they are not nullFlavored and their value attributes are equal). The translation property is excluded from 
the equality test. In addition the language property is excluded from the test, due to the problems this would 
introduce for values of type ST where the language is not specified. 

An ED with a plain text content may also be equal to a ST with the same character content, following the rules 
described for ED (Section 0). 

7.4.6.5 Invariants 

 if there is a value, there shall be at least one character; 

 translations may not contain translations. 

OCL for invariants: 

inv "no nested translations": translation-> 

forAll(t | t.translation->isEmpty) 

   

inv "content if not nullFlavored" : isNotNull implies 

    (value.oclIsDefined and value.size > 0) 

 

http://www.ietf.org/rfc/rfc3066.txt


ISO/FDIS 21090:2009(E) 

24 © ISO 2009 – All rights reserved 

 

7.4.6.6 Operations 

7.4.6.6.1 mediaType : String: Returns a value of text/plain. 

7.4.6.6.2 size : Integer: The number of characters in the string. 

7.4.6.6.3 concat(other : ST) : ST: The concatenation of this and other. 

7.4.6.6.4 substring(lower : INT, upper : INT) : ST: The sub-string of this starting at character number 
lower, up to and including character number upper.  

Character numbers run from 1 to this.size().  

NOTE When characters are extracted from a string, it might be necessary to copy other predecessor characters that 

set the appropriate context in some character encodings. 

7.4.6.6.5 toInteger : INT: If the content of the string is a valid integer, the value as an INT. If the content is 
not a valid integer, then nullFlavor NI. 

A string is a valid integer if it conforms to the integer-literal format defined in ISO/IEC 11404, or if it conforms 
to the lexical representation of the integer type defined in xml schema. 

7.4.6.6.6 toReal : REAL: If the content of the string is a valid floating point number, the value as a REAL. If 
the content is not a valid floating point number, then nullFlavor NI.  

A string is a valid floating point number if it conforms to the real-literal format defined in ISO/IEC 11404, or if it 
conforms to the lexical representation of the double type defined in xml schema. 

7.4.6.6.7 toTimestamp : TS: If the content of the string is a valid timestamp, the value as a TS. If the 
content is not a valid timestamp, then nullFlavor NI. A string is a valid integer if it conforms to the format 
described under the TS type. 

7.4.6.7 Examples 

<example language="en" value="cellulitis of the left foot"/> 

7.4.7 ST.NT 

7.4.7.1 Description 

A flavour that constrains ST 

ST.NT constrains ST so that no translations are allowed. 

7.4.7.2 Invariants 

 no translations are allowed. 

OCL for invariants: 

  inv "no translations": translation->isEmpty 

 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 25 
 

7.4.8 ST.SIMPLE 

7.4.8.1 Description 

A flavour that constrains ST.NT 

ST.SIMPLE constrains ST.NT so that it has no language. 

7.4.8.2 Invariants 

 no language is allowed. 

OCL for invariants: 

  inv "no language": language.oclIsUndefined 

 

7.4.9 SC (coded string) 

7.4.9.1 Description 

Specializes ST 

A character string that optionally may have a code attached. The text shall always be present if a code is 
present. 

NOTE The code is often a local code. SC is used in cases where coding is exceptional (e.g., user error messages 
are essentially text messages, and the text message is the important content. However sometimes messages come from 

a catalog of prepared messages, which SC allows to reference). 

Any non-null SC value may have a code, however, a code shall not be given without the text. 

The similarities and differences between SC and CD are discussed in 7.5.2.2, CD and SC. 

7.4.9.2 ISO/IEC 11404 syntax 

 type SC = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   value : characterstring, 

   language : characterstring, 

   translation : Set(ST.NT), 

   code : CD 

 ) 



ISO/FDIS 21090:2009(E) 

26 © ISO 2009 – All rights reserved 

 

7.4.9.3 Attributes 

7.4.9.4 code : CD: The coded value associated with the string. If the value is null or nullFlavored, 
there is no coded value associated with this string.  

7.4.9.5 Equality 

The definition of equality for SC is the same as for ST. Code is excluded from the equality test, and values of 
type SC may be equal to values of type ST (and therefore to values of type ED following the rules 
documented in for ST in 7.4.6.4). 

7.4.9.6 Invariants 

 if there is a code, there must also be some content on the SC (and therefore the SC must not have a 
nullFlavor). 

 the originalText value of the CD must be null (the originalText is the SC.value). 

OCL for invariants: 

  inv "no code if no value" : code.isNotNull implies 

     isNotNull 

  inv "no updateMode or History on SC attributes":  

   noUpdateOrHistory(code) 

  inv "no originalText" : code.isNotNull implies  

     code.originalText.isNull 

 

7.4.9.7 Examples 

<example xsi:type="SC" value="Intestinal nematode infection"> 

  <code code="57540006" codeSystem="2.16.840.1.113883.6.96"  

      codeSystemName="Snomed-CT"> 

    <displayName value="Intestinal nematode infection (disorder)"/> 

  </code> 

</example> 

<example xsi:type="SC" value="Lung nematode infection"/> 

Two examples of SC are in use. When SC is mandatory, text is required, and coding is optional. This is often 
suitable for front-line data collection, particularly in emergency medicine or relief efforts, where there is no 
opportunity to perform thorough evaluation of the choice of concept. If a concept is known, then it is used, and 
the designator used as the text. If no concept can immediately be located, the user enters some text which 
may be post-coded later. 

7.4.10 SC.NT 

7.4.10.1 Description 

A flavour that constrains SC 

SC.NT constrains SC so that no translations are allowed. 

7.4.10.2 Invariants 

 no translations are allowed. 

OCL for invariants: 

   inv "no translations": translation->isEmpty 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 27 
 

7.5 Coded datatypes (terminology) 

7.5.1 Overview 

These datatypes provide support for use of codes and terms from terminologies and classifications. 
See Figure 4. 

 

Figure 4 — Coded datatypes 

7.5.2 CD (concept descriptor) 

7.5.2.1 Description 

Specializes ANY 

A CD is a reference to a concept defined in an external code system, terminology or ontology. A CD may 
contain a simple code – that is, a reference to a concept defined directly by the referenced code system, or it 
may contain an expression in some syntax defined by the referenced code system that can be meaningfully 
evaluated. e.g., the concept of a "left foot" as a postcoordinated term built from the primary code "FOOT" and 
the qualifier "LEFT". 



ISO/FDIS 21090:2009(E) 

28 © ISO 2009 – All rights reserved 

 

A CD may also contain an original text or phrase that served as the basis of the coding. This is preserved to 
allow for validation of the representation of the concept in various fashions. 

A CD can contain one or more translations into multiple coding systems. The translations are all 
representations of the same concept in various code systems. There is only one concept, and only the first CD 
may contain an original text. It is possible to represent the translation chain – which CD was translated from 
which – if desired. Each CD may also carry a rationale to indicate why it is represented. 

A CD with no nullFlavor attribute shall have a code attribute or nonNull originalText attribute. A CD that has a 
code, codeSystem or originalText attribute but does not meet external constraints of the applicable value set 
shall have a nullFlavor attribute with a value of "OTH". 

Attributes with type CD are generally bound by externally specified constraints which constrain the coded 
concepts to which a CD may refer. These constraints may be qualified as "extensible― (CWE) or "not 
extensible― (CNE). If the constraint is not extensible (CNE), then a CD that does not have a nullFlavor shall 
contain a code that conforms to the constraint. If the constraint is extensible (CWE) then a CD that does not 
have a nullFlavor shall contain either a code that exists in the domain with which the attribute is associated, a 
code from a locally defined code system, or just some originalText that describes the concept. If the code is 
taken from a locally defined code system, then the codeSystem property shall specify the local code system. 

For both CNE and CWE constraint types, the translations may contain nonNull codes from any source unless 
otherwise specified by the constraining model. 

For code systems that define expression syntaxes, CNE constraints may be used, providing the code system 
definitions define the appropriate support to enable value sets to make useful statements about how to control 
the expression syntax, and that the value set machinery used also has the appropriate support. 

7.5.2.2 CD and SC 

The CD and SC types have very similar structures. CD has a code:codeSystem pair with translations, and an 
originalText which has type ED.Text – plain text that may be a reference. SC has a string and a code: CD to 
allow the string to be coded. In SC, the code does not have an originalText – it is fixed to the value attribute of 
the SC. Therefore both types have a code:codeSystem pair with translations and originalText. 

Although the types thus share the same capability of representing coded text, and have nearly the same core 
information structure, they differ in purpose. CD exists to provide a reference to a concept in defined in some 
code system, and possibly to reference some text in support. When a CD is mandatory in the context of use, a 
code must be provided, and an original text is optional, except in the CWE case discussed above, where 
either a code or an originalText must be provided. SC exists to provide text content that may additionally be 
encoded. When SC is mandatory, the text (which becomes the original text) shall be provided directly, and the 
code is always optional. 

When it is obvious which aspect of the coded text is mandatory – code or text, then it will be obvious whether 
to use CD or SC. On the other hand, when neither aspect is mandatory, or both are mandatory, then it is not 
so obvious which to use. 

NOTE When both are mandatory, either class can be constrained to require both aspects using some formal 

constraint language such as OCL). 

Generally, when post-coding existing text, CD is an obvious choice, as it allows references into the existing 
text. In other cases, it may be ambiguous which of SC and CD is the correct choice. When choosing between 
them, users should consider the specialization hierarchy, which may dictate a particular choice (it may be 
useful that SC is a specialization of ST, or it may not), and also should consider the constraints that have been 
made on the type in the context of use; this may also dictate a particular choice. 

In some circumstances it is still ambiguous which type to use. In cases of doubt, implementors should choose 
CD by default. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 29 
 

7.5.2.3 ISO/IEC 11404 Syntax 

 type CD = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   code : characterstring, 

   codeSystem : characterstring, 

   codeSystemName : characterstring, 

   codeSystemVersion : characterstring, 

   valueSet : characterstring, 

   valueSetVersion : characterstring, 

   displayName : ST, 

   originalText : ED, 

   codingRationale : CodingRationale, 

   translation : Set(CD), 

   source : CD 

) 

7.5.2.4 Attributes 

7.5.2.4.1 code : String: The plain code symbol defined by the code system, or an expression in a syntax 
defined by the code system which describes the concept. 

If a code is provided, it shall be an exact match to a plain code symbol or expression defined by the code 
system. If the code system defines a code or expression that includes whitespace, the code shall include the 
whitespace. An expression can only be used where the codeSystem either defines an expression syntax, or 
there is a generally accepted syntax for the codeSystem. A code system may be defined that only defines an 
expression syntax with bindings to other code systems for the elements of the expression. 

It is at the discretion of the interpreting system whether to check for an expression instead of a simple code 
and evaluate the expression instead of treating the expression as a code. In some cases, it may be unclear or 
ambiguous whether the code represents a single symbol or an expression. This usually arises where the code 
system defines an expression language and then defines pre-coordinated concepts with symbols which match 
their expression, e.g. UCUM. In other cases, it is safe to treat the expression as a symbol. There is no 
guarantee that this is always safe: the definitions of the codeSystem should always be consulted in order to 
determine how to handle potential expressions. 

7.5.2.4.2 codeSystem : Uid: The code system that defines the code, or if no code was found, the 
codeSystem in which no code was found. 

Code systems shall be referred to by a UID, which allows unambiguous reference to standard code systems 
and other local codesystems. Where either ISO or HL7 have assigned UID to code Systems, then these UIDs 
shall be used. Otherwise implementations shall use an appropriate ISO Object Identifier (OID) or UUID to 
construct a globally unique local coding system identifier. 

A CD that has a code attribute shall have a codeSystem specifying the system of concepts that defines the 
code. 

A CD with a nullFlavor OTH indicates that a concept could not be coded in the coding system or value set 
specified. Thus, for these coding exceptions, the code system or value set that did not contain the appropriate 
concept shall be provided in codeSystem or valueSet. 



ISO/FDIS 21090:2009(E) 

30 © ISO 2009 – All rights reserved 

 

7.5.2.4.3 codeSystemName : String: The common name of the coding system. 

The code system name has no computational value. codeSystemName can never modify the meaning of 
codeSystem and cannot exist without codeSystem. 

Information processing entities claiming direct or indirect conformance shall not functionally rely on 
codeSystemName. In addition, they may choose not to implement codeSystemName but shall not reject 
instances because codeSystemName is present. 

NOTE The purpose of a code system name is to assist an unaided human interpreter of a code value to interpret 

codeSystem. 

7.5.2.4.4 codeSystemVersion : String: If applicable, a version descriptor defined specifically for the given 
code system. 

Different versions of one code system shall be compatible. By definition a code symbol shall have the same 
meaning throughout all versions of a code system. Between versions, codes may be retired but not withdrawn 
or re-used. Where the definition of the meaning of a code symbol changes, it must still be compatible (equal) 
between different code system versions. 

Whenever a code system changes in an incompatible way, it will constitute a new code system, not simply a 
different version, regardless of how the vocabulary publisher calls it. For example, the publisher of ICD-9 and 
ICD-10 calls these code systems, "revision 9" and "revision 10" respectively. However, ICD-10 is a complete 
redesign of the ICD code, not a backward compatible version. Therefore, for the purpose of this datatype 
specification, ICD-9 and ICD-10 are different code systems, not just different versions. By contrast, when 
LOINC updates from revision "1.0j" to "1.0k", this would be considered as just another version of LOINC, since 
LOINC revisions are backwards compatible. 

7.5.2.4.5 valueSet : Uid:  The value set that applied when this CD was coded. 

Value sets shall be referred to by an identifier name which allows unambiguous reference to a value set. 
Where either ISO or HL7 have assigned an identifying name to a value set, then that name shall be used. 

In many cases, a CD is created from a value set – either a code/code system pair is chosen from a valueSet, 
or one is not chosen and the CD has the exceptional value of NullFlavor.OTH. If no code is chosen, it is 
generally inappropriate to reference the code system from which the code was chosen as the value set may 
not match the code system (may include a subset of the codeSystem, or additional terms from other code 
systems); instead, the value set should be provided. In addition, there are some known use cases where the 
value set that a user or system was offered when choosing a code affects the interpretation of the code. 

If a code is provided, the meaning of the code must come from the definition of the code in the code system. 
The meaning of the code shall not depend on the value set. Information Processing Entities claiming direct or 
indirect conformance shall not be required to interpret the code in light of the valueSet, and they shall not 
reject an instance because of the presence or absence of any or a particular value set. 

7.5.2.4.6 valueSetVersion : String: The version of the valueSet in which no code was found. 

valueSetVersion shall be provided when a valueSet is provided, and otherwise shall be null. The value of the 
valueSetVersion must properly identify a particular version of the value set following the rules defined by the 
value set or its publisher. 

It is generally recommended that value set publishers specify that the version is identified by the date/time that 
the value set version is published, and that the publication process makes the date/time explicitly clear. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 31 
 

7.5.2.4.7 displayName : ST: A name, title, or representation for the code or expression as it exists in the 
code system. 

If populated, the displayName shall be a valid human readable representation of the concept as defined by the 
code system at the time of data entry. The displayName shall conform to any rules defined by the 
codingSystem; if the codeSystem does not define a human representation for the code or expression, then 
none can be provided. displayName is included both as a courtesy to an unaided human interpreter of a code 
value and as a documentation of the name used to display the concept to the user. The display name has no 
functional meaning; it shall never exist without a code; and it shall never modify the meaning of the code. A 
display name may not be present if the code is an expression for which no display name has been assigned 
or can be derived. Information processing entities claiming direct or indirect conformance may choose not to 
implement displayName but shall not reject instances because displayName is present. 

Display names shall not alter the meaning of the code value. Therefore, display names should not be 
presented to the user on a receiving application system without ascertaining that the display name adequately 
represents the concept referred to by the code value. Communication shall not simply rely on the display 
name. The display name's main purpose is to support implementation debugging. 

7.5.2.4.8 originalText : ED: The text as seen and/or selected by the user who entered the data which 
represents the intended meaning of the user. 

NOTE Local implementations might influence what is required to represent that original text. 

Original text can be used in a structured user interface to capture what the user saw as a representation of the 
code on the data input screen, or in a situation where the user dictates or directly enters text, it is the text 
entered or uttered by the user. 

It is valid to use the CD datatype to store only the text that the user entered or uttered. In this situation, original 
text will exist without a code. In a situation where the code is assigned sometime after the text was entered, 
originalText is the text or phrase used as the basis for assigning the code. 

The details of the link in the originalText.reference between different artifacts of medical information (e.g., 
document and coded result) is outside the scope of this International Standard and may be further proscribed 
in other specifications that use this one. 

The original text shall be an excerpt of the relevant information in the original sources, rather than a pointer or 
exact reproduction. Thus the original text shall be represented in plain text form. In specific circumstances, 
when the context of use is clearly described, the originalText may be a reference to some other text artefact 
for which the resolution scope is clearly described. 

Values of type CD may have an original text despite not having a code. Any CD value with no code signifies a 
coding exception. In this case, originalText is a name or description of the concept that was not coded. Such 
CD values may also contain translations. 

Translations directly encode the concept described in originalText. The originalText represents the 
originalText of the concept itself. Translations shall not have an originalText of their own. 

7.5.2.4.9 translation : Set(CD): A set of other CDs that each represent a translation of this CD into 
equivalent codes within the same code system or into corresponding concepts from other code systems. 

The translations are quasi-synonyms of one real-world concept. Every translation in the set is supposed to 
express the same meaning "in other words." However, exact synonymy rarely exists between two structurally 
different coding systems. For this reason, not all of the translations will be equally exact. 

Translations shall not contain translations. The root CD has one set of translations which lists all the 
translations. The root translation is generally the one that best meets the conformance criteria for the CD. No 
implication about lineage of the translations can be drawn from the selection of the root code. Instead the 
properties codingRationale and source is used to trace lineage. 



ISO/FDIS 21090:2009(E) 

32 © ISO 2009 – All rights reserved 

 

In the absence of a constraining model that makes constraints on the value domain of the CD, any of the 
translations may be the root CD. If the constraining model makes constraints on the value domain of the CD 
and there is a translation that meets the constraints, that translation should be the root CD. If the constraining 
model makes constraints on the value domain of the CD and there is no translation that meets the constraints, 
then any of the translations may be the root, as long as they are assigned a nullFlavor. An alternative is to put 
none of the translations in the root, and give it a nullFlavor of choice, and put all the translations in the 
translation property of the root. 

7.5.2.4.10 codingRationale : CodingRationale: the reason why a particular CD has been provided, either 
as the root concept or as one of the translations. 

If populated, the value contained in this attribute shall be taken from this enumeration, composed from the 
HL7 CodingRationale code system. The current values are: 

CodingRationale Enumeration. OID: 2.16.840.1.113883.5.1074 

1  O Original Originally produced code. 

1   P Post-coded Post-coded from free text source. 

1   R Required Required by the specification describing the use of the 
coded concept. 
 
The exact form of the requirement is not specified here; it 
may be required by the specification directly, or it may 
arise as an indirect result of other conformance tools. 
More than one different requirement may exist 
simultaineously, so more than one code in a CD complex 
may be required. 

1  OR Original and 
required 

Originally produced code, required by the specification 
describing the use of the coded concept. 

1  PR Post-coded and 
required 

Post-coded from free text source, required by the 
specification describing the use of the coded concept. 

ISO/IEC 11404 Syntax for codingRationale attribute 

 type CodingRationale = enumeration (O, P, R, OR, PR) 

 

A code is deemed to be post-coded if the user does not assign the code when they first enter the data. 
codingRationale is not expected to act as a quality review marker on the quality of the coding or the translation 
processes. 

A code is required when it is present in the instance to meet some constraints imposed on the instance by the 
context of use. Information Processing Entities shall not be required to mark a particular translation as 
required even though it is required by the context of use, but may do so. Information processing entities shall 
not reject instances because of the presence or absence of the codingRationale flag. 

7.5.2.4.11 source : CD: A reference to the CD that was the source of this translation, if this CD was created 
by translating it from another CD. 

This property is a reference. The source to which the reference points shall be provided within the scope of 
this CD‘s root CD and translations; that is, another representation of the same concept in the same attribute. 

A CD consists of a single root code and a set of translations, which do not have translations. Using the 
codingRationale property, a sender can indicate which is the original code. There are some circumstances in 
which it is useful to know which CD was translated from which CD. The source allows for the translation 
sequence from one translation to another to be represented. Each element of the translation set was 
translated from the original CD. Each translation may, however, also have further translations. Thus, when a 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 33 
 

code is translated multiple times the information about which code served as the input to which translation will 
be preserved. 

7.5.2.5 Equality 

The equality of two CD values is determined solely based upon code and codeSystem. The 
codeSystemVersion, originalText, codingRationale, source, value set information and translations are not 
included in the equality test. NullFlavored values are not equal even if they have the same nullflavor or the 
same original text. 

The equality is based on the literal value of the code and codeSystem. Information processing entities shall 

not consult the semantic meaning of the code codeSystem pair to determine whether the same concept is 
intended. 

NOTE 1 This means that for SNOMED, for example, two isomorphic forms of the same expression will not be equal. 
Implementations should choose the literal representation forms carefully. 

NOTE 2 CD values can also be equal with values of the CS datatype. 

NOTE 3 CD values can also be equal with values of the CO datatype. For details, see 7.8.6.4. 

7.5.2.6 Invariants 

 if the value is not null then code or originalText shall have a value; 

 if code has a value then codeSystem shall have a value; 

 valueSet requires a valueSetVersion; 

 codeSystemName can only have a value if codeSystem has a value; 

 codeSystemVersion can only have a value if codeSystem has a value; 

 displayName can only have a value if code has a value; 

 translations cannot have original text; 

 translations cannot have translations. 

OCL for invariants: 

  def: let hasCode : Boolean = code.oclIsDefined 

  def: let hasCodeSystem : Boolean = codeSystem.oclIsDefined 

  def: let hasOriginalText : Boolean = originalText.isNotNull 

  def: let fromCodeSystem(system : Uid) : Boolean =  

   codeSystem = system or translation->select(t |  

   t.fromCodeSystem(system))->notEmpty 

NOTE fromCodeSystem is defined so that you can make constraints from outside on the codeSystem of the CD or 

one of its translations. i.e. inv: code.fromCodeSystem("2.16.840.1.113883.6.42") 

  def: let noOriginalText : Boolean = originalText.oclIsUndefined 

 

  inv "null or (one or both of code and originalText)":  

     isNotNull implies (hasCode or hasOriginalText) 

         inv "other requires codeSystem or valueSet":  

    (nullFlavor = NullFlavor.OTH) implies    

    (codeSystem.oclIsDefined or valueSet.oclIsDefined) 

  inv "code requires codeSystem": code.oclIsDefined 



ISO/FDIS 21090:2009(E) 

34 © ISO 2009 – All rights reserved 

 

 implies codeSystem.oclIsDefined 

  inv "codeSystemName only if codeSystem":  

    codeSystemName.oclIsDefined implies codeSystem.oclIsDefined 

  inv "codeSystemVersion only if codeSystem": 

    codeSystemVersion.oclIsDefined implies codeSystem.oclIsDefined 

  inv "displayName only if code": displayName.oclIsDefined  

  implies code.oclIsDefined 

  inv "valueSet requires valueSetVersion":   

      valueSet.oclIsDefined implies (valueSetVersion.oclIsDefined) 

  inv "No original text on translations": 

      translation->forAll(t | t.noOriginalText) 

  inv "Translations cannot have translations":  

      translation->forAll(t | t.translation->isEmpty) 

  inv "no updateMode or History on CD elements":  

  noUpdateOrHistory(displayName)and 

       noUpdateOrHistory(originalText) and 

translation->forAll(t | noUpdateOrHistory(t)) 

 

   

 

7.5.2.7 Operations 

7.5.2.7.1 implies(other : CD):BL: True if this code codeSystem is a specialization of the other 
code codeSystem or has the same meaning. 

NOTE 1 In SNOMED, for example, two isomorphic forms of the same expression will imply each other. 

NOTE 2 A terminology service can be used to make this determination. 

7.5.2.8 Examples 

7.5.2.8.1 ICD Examples 

A simple example for code is the ICD-9 code for headache, which is "784.0".  

<example code="784.0" codeSystem="2.16.840.1.113883.6.42"  

       codeSystemName="ICD-9"> 

  <displayName value="Headache"/> 

  <originalText value="general headache"/> 

</example> 

A possible ICD-10 equivalent is "G44.1" (the ICD-10 classifications are slightly different).  

<example code="G44.1" codeSystem="2.16.840.1.113883.6.3" 

       codeSystemName="ICD-10"> 

  <displayName value="Headache"/> 

  <originalText value="general headache"/> 

</example> 

7.5.2.8.2 Coding Failure Examples 

A common situation with CD is when the actual concept cannot be properly represented in a particular coding 
system. Usually this circumstance arises where the concept is expected to be represented in a particular 
coding system. For the purposes of these examples, we assume that all these examples are for an 
observation value of type CD that is bound to the full Snomed-CT valueset (Example OID for the value set = 
2.16.840.1.113883.19.11.1 as published 11-June 2007, Real OID for the SNOMED-CT code system = 
2.16.840.1.113883.6.96). Important: the OID root 2.16.840.1.113883.19 is an HL7 OID used for example-only 
OIDs and OIDs in this space are never valid in real instances. The OIDs used in these examples that in the 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 35 
 

OID space 2.16.840.1.113883.6, 2.16.840.1.113883.5 and 2.16.840.1.113883.11 are the correct OIDs for use 
in production instances. 

The simplest case is where the CD is not represented in the instance at all, or simply represented as no 
information. 

<value nullFlavor="NI"/> 

However this isn't a very useful representation – frequently the source system knows more information, and it 
is still useful to convey that information to the destination system, while still labelling the coding as incomplete. 

<value nullFlavor="OTH" codeSystem="2.16.840.1.113883.6.96"/> 

Or it may be encoded as 

<value nullFlavor="OTH" valueSet="2.16.840.1.113883.19.11.1" 

valueSetVersion="20070711"/> 

In this example, we specify valueSetVersion as a timestamp to the nearest day. The actual value allowed for 
the valueSetVersion depends on the definition of the value set. In this case, it is assumed that the definition of 
the value set 2.16.840.1.113883.19.11.1 specifies that the version is quoted to the day of the official release 
by the owning authority. 

Both examples say that the concept cannot be coded in SNOMED. Even more useful is to convey some 
specific information about the concept, even though it cannot be represented in SNOMED:  

<value nullFlavor="OTH" codeSystem="2.16.840.1.113883.6.96"> 

 <originalText value="Burnt ear with iron. Burnt other ear calling for 

ambulance"/> 

</value> 

It is also possible that the content was first encoded in some other code system than SNOMED, and the 
source system was unable to encode the value in SNOMED. In this case, there is two forms of representation. 
The first is when the binding to SNOMED is labelled as CWE: local extensions are allowed: 

<value code="burn" codeSystem="2.16.840.1.113883.19.5.2"> 

 <originalText value="Burnt ear with iron. Burnt other ear calling for 

ambulance"/> 

</value> 

In this case, because the binding is CWE, local extensions are allowed, and the source system can simply use 
its own codeSystem (here identified by the OID "2.16.840.1.113883.19.5.2", which is an example OID) to 
extend the other code system. In fact, the source system can also use a code from another well known code 
system, such as ICD-9. If ICD-9 had a code "A10.1" which stood for this same concept, then this would be 
valid: 

<value code="A10.1" codeSystem="2.16.840.1.113883.6.42"> 

  <originalText value="Burnt ear with iron. Burnt other ear 

   calling for ambulance"/> 

</value> 

If, however, the binding to the SNOMED-CT valueset is labelled CNE, then the code must come from 
SNOMED. The same information as the case above must be conveyed differently:  

<value nullFlavor="OTH" codeSystem="2.16.840.1.113883.6.96"> 

  <originalText value="Burnt ear with iron. Burnt other ear  

   calling for ambulance"/> 

  <translation code="burn" codeSystem="2.16.840.1.113883.19.5.2"> 

</value> 



ISO/FDIS 21090:2009(E) 

36 © ISO 2009 – All rights reserved 

 

Now the code is clearly marked as OTH: the code cannot be represented in SNOMED-CT, but a translation 
from another system is provided. Though it is pretty redundant in this case, the source system could indicate 
which translation comes from which using the source property: 

<value nullFlavor="OTH" codeSystem="2.16.840.1.113883.6.96"> 

  <originalText value="Burnt ear with iron. Burnt other ear  

    calling for ambulance"/> 

  <translation id="s1" code="burn"  

    codeSystem="2.16.840.1.113883.19.5.2"> 

  <source xref="s1"/> 

</value> 

All these examples have assumed that the attribute is bound to the fictitious value set 
2.16.840.1.113883.19.11.1 which is all of SNOMED-CT. If the value set was extended to include the LOINC 
codes as well, it would no longer be appropriate to encode a failure to code like this: 

<value nullFlavor="OTH" codeSystem="2.16.840.1.113883.6.96"/> 

since it is not true that the concept could not be coded from SNOMED-CT – it could not be coded in either 
SNOMED-CT or LOINC. For this reason, it is appropriate to encode the failure to code in the valueSet form: 

<value nullFlavor="OTH" valueSet="2.16.840.1.113883.19.11.1" valueSetVersion="20070711"/> 

7.5.2.8.3 Expression examples 

Expressions generally arise with complex medical terminologies such as SNOMED. For example, SNOMED 
CT defines a concept "cellulitis (disorder)" (128045006) an attribute "finding site" (363698007) and another 
concept "foot structure (body structure)" (56459004). SNOMED CT allows these codes to be combined in a 
code phrase: 

128045006|cellulitis (disorder)|:{363698007|finding site|=56459004|foot 

structure|} 

The full CD form for this is: 

<value code="128045006:{363698007=56459004}"  

    codeSystem="2.16.840.1.113883.6.42" codeSystemName="Snomed-CT"> 

  <originalText value="Cellulitis of the foot"/> 

</value> 

The SNOMED compositional expression language allows for the inclusion of the term in the expression, as 
shown in the first example. These make the expression more readable for humans, and so are used 
throughout this section in the standalone expressions. However, the terms are optional and do not improve 
readability for computers; instead, their optional presence creates needless processing complexity, such as 
for testing equality. For this reason the expressions in CD instances should not include the terms, and no CD 
examples include the terms in the expressions in this International Standard. Value sets may make rules 
about the presence or absense of the terms in the expressions. 

The SNOMED compositional expression language is currently undergoing comment, and may be found on the 
IHTSDO website: 
(http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Technical_Docs/abstract_models_and_representationa
l_forms.pdf). The next two examples are based on SNOMED CT Core Edition 2007-01-31.  

This first example is the SNOMED code for "fracture of left tibia". It shows issues associated with grouping 
and nesting. 

31978002|fracture of tibia|: 272741003|laterality|=7771000|left| 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 37 
 

Strictly speaking (in normal form) a "fracture of left tibia" is not a "left fracture" of a "tibia bone" but is a 
"fracture" of the "left" "tibia bone" (that is, the qualification of "left" applies to the bone not to the fracture). Also 
note in this example that the fracture and bone are grouped – this may look irrelevant but is potentially 
significant for combined fractures where different morphology may apply to different bones. An alternative 
rendering for this same concept is: 

64572001|disease|:{116676008|associated morphology|=72704001|fracture|, 

  363698007|finding site|=(12611008|bone structure of  

    tibia|:272741003|laterality|=7771000|left|)} 

The second example shows a more complicated grouping and nesting structure. The SNOMED CT 
expression for "past history of fracture of left tibia" includes nesting even in its simplest form because the 
laterality does not apply to the past history but rather to the disorder. 

417662000|past history of clinical finding|:246090004|associated finding|= 

     (31978002|fracture of tibia|: 272741003|laterality|=7771000|left|) 

The alternative rendering is even more nested: 

243796009|situation with explicit context|:246090004|associated finding|= 

   (64572001|disease|:{116676008|associated morphology|=72704001|fracture|, 

   363698007|finding site|=(12611008|bone structure of tibia|: 

   272741003|laterality|=7771000|left|)}),408729009|finding context|= 

   410515003|known present|,408731000|temporal context|=410513005|past|, 

   408732007|subject relationship context|=410604004|subject of record| 

These are provided as examples of SNOMED expression syntaxes. A full discussion the merits of the different 
forms, their relationship and how to work with them can be found in the SNOMED compositional expression 
language definition referred to above. 

It is important to note that the expression syntax and semantic rules are specified by the code system. For 
instance, in SNOMED CT, there are a defined set of qualifying attributes, and only Findings and Disorders can 
be qualified with the "finding site" attribute. CD does not provide for normalization of compositional 
expressions, therefore it is possible to create ambiguous expressions. Users should understand that they 
must provide the additional constraints necessary to assure unambiguous data representation if they are 
planning to create compositional expressions using CD. Otherwise, they risk the inability to retrieve a 
complete set of all records corresponding to any given query. 

ICD-10 allows dual coding. See, for example, Section 3.1.3 of the ICD-10 Instruction Manual (2nd Edition, 
found at http://www.who.int/entity/classifications/icd/ICD-10_2nd_ed_volume2.pdf). While ICD-10 clearly 
establishes the semantic basis for the dual coding, it does not define an actual literal expression form suitable 
for use with CD. In such cases, HL7 defines a suitable literal expression form and assigns an OID to that. The 
OID for this ICD-10 expression is 2.16.840.1.113883.6.260. The code system specifies that the two ICD-10 
codes are separated by a space. 

<value code="J21.8 B95.6" codeSystem="2.16.840.1.113883.6.260"  

      codeSystemName="ICD-10 Dual Code Expression"> 

  <originalText value="Staph aureus bronchiolitis"/> 

</value> 

The ICD-10 code J21.8 is "Acute bronchiolitis due to other specified organisms" and the code B95.6 is 
"Staphylococcus aureus as the cause of diseases classified to other chapters". 

Expressions also arise in UCUM. Because UCUM is stable, UCUM expressions are usually found in the unit 
attribute of PQ (see 7.8.9.3.2). Although this is a CS, this still a case of expressions in a code (a CS can be 
converted to a CD by filling out the codeSystem explicitly). Here is a simple UCUM expression that is actually 
a direct reference to a simple UCUM concept: 

<value xsi:type="PQ" value="1" unit="g"> 

http://www.who.int/entity/classifications/icd/ICD-10_2nd_ed_volume2.pdf


ISO/FDIS 21090:2009(E) 

38 © ISO 2009 – All rights reserved 

 

A gram is a definitional concept in UCUM. A typical UCUM expression is more complex: 

<value xsi:type="PQ" value="1" unit="mmol/l"> 

The concentration of the analyte is 1 mmol/l; mmol/l is a UCUM expression, as is the simpler case: 

<value xsi:type="PQ" value="1" unit="mmol"> 

The amount of analyte is 1 mmol; mmol is also a UCUM expression, a combination of m for milli and mol for 
moles. 

7.5.3 CD.CV (coded value) 

7.5.3.1 Description 

A flavour that constrains CD. 

Coded data, specifying only a code, code system, and optionally display name and original text. 

Used only as the type of properties of other datatypes. 

CV is used when any reasonable use case will require only a single code value to be sent. Thus, it should not 
be used in circumstances where multiple alternative codes for a given value are desired or there may be a 
requirement to migrate to a new coding system. 

7.5.3.2 Invariants 

 no translations are allowed; 

 no source is allowed. 

OCL for invariants: 

  inv "no translations": translation.size = 0 

  inv "no source": source.oclIsUndefined 

 

7.5.4 CS (coded simple value) 

7.5.4.1 Description 

Specializes ANY. 

Coded data in their simplest form, where only the code is not predetermined. 

The code system and code system version are implied and fixed by the context in which the CS value occurs. 

Due to its highly restricted functionality, CS shall only be used for simple structural attributes with highly 
controlled and stable terminologies where: 

 all codes come from a single code system; 

 codes are not re-used if their concept is deprecated; 

 the publication and extensibility properties of the code system are well described and understood. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 39 
 

7.5.4.2 ISO/IEC 11404 syntax 

 type CS = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   code : characterstring 

 ) 

7.5.4.3 Attributes 

7.5.4.3.1 code : String: The plain code symbol defined by the code system. if the code value is empty or 
null, then there is no code in the code system that represents the concept. 

Code shall only contain characters that are either a letter, a digit, or one of '.', '-', '_' or ':'. Code systems that 
are used with CS shall not define code symbols or expression syntaxes that contain whitespace or any other 
characters not in this list. 

7.5.4.4 Equality 

The equality of two CS values is determined solely based upon the explicit code and the implicit codeSystem. 
The codeSystemVersion is not included in the equality test. NullFlavored values are not equal even if they 
have the same NullFlavor. 

The equality is based on the literal value of the code and codeSystem. Information Processing Entiies shall 

not consult the semantic meaning of the code codeSystem pair to determine whether the same concept is 
intended. 

NOTE CS values can be equal to CD values if both specify the same code and codeSystem. 

7.5.4.5 Invariants 

 there must be a code if not nullFlavored. 

OCL for invariants: 

  inv "code is required": isNotNull implies  

 code.oclIsDefined 

 

7.5.4.6 Operations 

7.5.4.6.1 codeSystem() : Uid: Although a CS does not carry a codeSystem as an attribute, there shall 
always be an applicable codeSystem specified by the context in which CS is used. This operation returns the 
codeSystem that is specified by the context. 

This operation shall always return a valid codeSystem, whether or not the CS is nullFlavored, as it is taken 
from the context of use. 

7.5.4.6.2 codeSystemVersion() : String: Although a CS does not carry a codeSystemVersion as an 
attribute, there may be an applicable version specified by the context in which CS is used. 

This operation returns the codeSystemVersion if one is specified by the context. This operation must always 
return a valid codeSystem, whether or not the CS is nullFlavored, as it is taken from the context of use. 



ISO/FDIS 21090:2009(E) 

40 © ISO 2009 – All rights reserved 

 

7.5.4.7 Examples 

<code xsi:type="CS" code="NS"/> 

A simple code NS in the designated code system. 

7.6 Identification and location datatypes 

7.6.1 Overview 

These datatypes provide support for identifying objects, records and things, and specifically for URLs, URIs 
and telecommunication addresses. See Figure 5. 

 

Figure 5 — Identification and location datatypes 

7.6.2 TEL (Telecommunication Address) 

7.6.2.1 Description 

Specializes ANY 

A locatable resource that is identified by a URI, such as a web page, a telephone number (voice, fax or some 
other resource mediated by telecommunication equipment), an e-mail address, or any other locatable 
resource that can be specified by a URL. 
 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 41 
 

The address is specified as a Universal Resource Locator (URL) qualified by time specification and use codes 
that help in deciding which address to use for a given time and purpose. 

The value attribute is constrained to be a uniform resource locator specified according to IETF RFC 1738 and 
RFC 2806 when used in this datatype. 

NOTE The intent of this datatype is to be a locator, not an identifier; this datatype is used to refer to a locatable 
resource using an URL, and knowing the URL allows one to locate the object. However some use cases have arisen 

where a URI is used to refer to a locatable resource. Though this datatype allows for URIs to be used, the resource 
identified should always be locatable. A common use of locatable URI's is to refer to SOAP attachments. 

7.6.2.2 ISO/IEC 11404 syntax 

 type TEL = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   value : characterstring, 

   use : Set(TelecommunicationAddressUse), 

   capabilities : Set(TelecommunicationCapability), 

   useablePeriod : QSET(TS) 

 ) 

7.6.2.3 Attributes 

7.6.2.3.1 value : Uri: A uniform resource identifier specified according to IETF RFC 2396. 

The URI specifies the protocol and the contact point defined by that protocol for the resource. 

EXAMPLES: Notable uses of the telecommunication address datatype are for telephone and telefax numbers, e-mail 

addresses, Hypertext references, FTP references, etc. 

If the TEL has a nullFlavor, it is not necessary for the value to contain a valid URL. For instance, if the flavour 
is UNK, the value may be just "tel:" to indicate that what is unknown is a telephone number. 

7.6.2.3.2 use : Set(TelecommunicationAddressUse): One or more codes advising system or user which 
telecommunication address in a set of like addresses to select for a given telecommunication need. 

The telecommunication use code is not a complete classification for equipment types or locations. Its main 
purpose is to suggest or discourage the use of a particular telecommunication address. There are no easily 
defined rules that govern the selection of a telecommunication address. Conformance statements may clarify 
what rules may apply or how additional rules are applied. 



ISO/FDIS 21090:2009(E) 

42 © ISO 2009 – All rights reserved 

 

If populated, the values contained in this attribute SHALL be taken from the HL7 
TelecommunicationAddressUse code system. The current values are: 

TelecommunicationAddressUse Enumeration. OID: 2.16.840.1.113883.5.1011 

1  H Home address 

A communication address at a home, attempted contacts 
for business purposes might intrude privacy and chances 
are one will contact family or other household members 
instead of the person one wishes to call. Typically used 
with urgent cases, or if no other contacts are available. 

2    HP Primary home The primary home, to reach a person after business hours. 

2    HV Vacation home A vacation home, to reach a person while on vacation. 

1  WP Work place 
An office address. First choice for business related 
contacts during business hours. 

2    DIR Direct 

Indicates a work place address or telecommunication 
address that reaches the individual or organization directly 
without intermediaries. For telephones, often referred to as 
a "private line". 

2    PUB Public 

Indicates a work place address or telecommunication 
address that is a "standard" address which may reach a 
reception service, mail-room, or other intermediary prior to 
the target entity. 

1  BAD Bad address A flag indicating that the address is bad, in fact, useless. 

1  TMP 
Temporary 
address 

A temporary address, may be good for visit or mailing. An 
address history can provide more detailed information. 

1  AS 
Answering 
service 

An automated answering machine used for less urgent 
cases and if the main purpose of contact is to leave a 
message or gain access to an automated announcement. 

1  EC 
Emergency 
contact 

A contact specifically designated to be used for 
emergencies. This is the first choice in emergencies, 
independent of any other use codes. 

1  MC Mobile contact 

A telecommunication device that moves and stays with its 
owner. May have characteristics of all other use codes, 
suitable for urgent matters, not the first choice for routine 
business. 

1  PG Pager 
A paging device suitable to solicit a callback or to leave a 
very short message  

ISO/IEC 11404 syntax for telecommunicationAddressUse attribute 

 type TelecommunicationAddressUse = enumeration (H, HP, HV, WP, DIR, 

PUB, BAD, TMP, AS, EC, MC, PG) 

 

7.6.2.3.3 capabilities : Set(TelecommunicationCapability): One or more codes advising a system or 
user what telecommunication capabilities are known to be associated with the telecommunication address. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 43 
 

If populated, the values contained in this attribute shall be taken from the HL7 TelecommunicationCapability 
code system. The current values are: 

TelecommunicationCapability Enumeration. OID: 2.16.840.1.113883.5.1118 

1 voice Voice This device can receive voice calls (i.e. talking to another person, or 
a recording device, or a voice activated computer) 

1  fax Fax This device can receive faxes. 

1   data Data This device can receive data calls (i.e. modem) 

1  tty Text This device is a text telephone. 

1  sms SMS This device can receive SMS messages 

ISO/IEC 11404 syntax for TelecommunicationCapability attribute 

 type TelecommunicationCapability = enumeration (voice, fax, data, 

tty, sms) 

 

 

7.6.2.3.4 useablePeriod: QSET(TS): The periods of time during which the telecommunication address can 
be used. 

For a telephone number, this can indicate the time of day in which the party can be reached on that telephone. 
For a web address, it may specify a time range in which the web content is promised to be available under the 
given address. 

7.6.2.4 Equality 

Two nonNull TEL values are equal if their canonical forms have the same value attribute. The use and 
useablePeriod attributes are excluded from the equality test. 

7.6.2.5 Invariants 

 value must be provided. 

OCL for Invariants: 

  inv "value is required": isNotNull implies value.oclIsDefined 

  def: let scheme(s : String) : Boolean 

        = value.substring(0, s.size) = s 

  inv "no updateMode or History on TEL attributes": 

 noUpdateOrHistory(useablePeriod) 

 

7.6.2.6 Operations 

7.6.2.6.1 canonical : TEL: The TEL with any seperator or other non-significant characters stripped out of 
the address. 

The tel: syntax allows for characters such as ( and ) which are syntactical separator characters but do not 
change the actual telephone number. Canonical strips characters like these out of the address portion. The 
actual characters stripped out depend on the scheme. 

The mailto: syntax allows for extra name and header information. This extra information is stripped out of the 
canonical form for the mailto: scheme, leaving just the plain email address(es). 



ISO/FDIS 21090:2009(E) 

44 © ISO 2009 – All rights reserved 

 

7.6.2.7 Extensions to URL/URI syntax 

This International Standard defines the following extensions to the URL scheme: 

 x-text-tel: – indicates that the destination device is a text telephone; the syntax of the address portion 
of the URL is the same as TEL; 

 x-text-fax: – indicates that the destination device is a fax machine; the syntax of the address portion 
of the URL is the same as TEL. This protocol replaces the deprecated W3C protocol fax. 

This International Standard defines the following extensions to the URN scheme: 

 hl7ii – a reference to an II value defined in this International Standard. The full syntax of the URN is 
urn:hl7ii:{root}[:{extension}] where {root} and {extension} (if present) are the values from the II that is 
being referenced. Full details of this protocol are defined in the HL7 Abstract Data Types 
Specification. 

7.6.2.8 Examples 

7.6.2.8.1 Web address  

<example xsi:type="TEL" value="http://www.temp.org/example/234232"/> 

A reference to the web page available from http://www.temp.org/example/234232 .  

7.6.2.8.2 Combined home and work phone  

<example xsi:type="TEL" value="tel:+15556755745"  

   use="H WP" capabilities="voice fax"/> 

A home (H) phone number for a person who works at home (WP) that is capable of receiving both voice and 
fax calls.  

7.6.2.8.3 Unknown home phone number  

<example xsi:type="TEL" nullFlavor="UNK" value="tel:" use="H"/> 

An unknown home (H) phone number. 

7.6.2.8.4 Work phone with extension  

<example xsi:type="TEL" value="tel:+1(555)6755745;postd=545" use="WP"/> 

A work phone with an extension specified. Note that extensions are not the only use for the post-dial 
sequence. Consult RFC 2806 [http://www.ietf.org/rfc/rfc2806.txt] for further details. The canonical form of this 
example is: 

<tel value="tel:+15556755745;postd=545" use="WP"/>  

7.6.3 TEL.URL 

7.6.3.1 Description 

A flavour that constrains TEL 

TEL.URL constrains TEL so that it must point to a locatable resource that returns binary content. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 45 
 

7.6.3.2 Invariants 

 no use codes; 

 the URL scheme must be file, nfs, ftp, cid (for SOAP attachments), http, or https. 

OCL for Invariants: 

  inv "no use": use->isEmpty 

  inv "schemes": (scheme("file") or scheme("ftp") or  

  scheme("cid") or scheme("http") or scheme("https")  

   or scheme("nfs")) 

 

 

7.6.4 TEL.PERSON 

7.6.4.1 Description 

A flavour that constrains TEL. 

TEL.PERSON constrains TEL so that it must refer to a method of communication with a person. 

7.6.4.2 Invariants 

 the URL scheme must be tel, x-text-fax, x-text-tel or mailto. 

OCL for Invariants: 

  inv "Personal Address": scheme("tel") or  

  scheme("x-text-fax")or scheme("x-text-tel") or  

  scheme("mailto") 

 

7.6.5 TEL.PHONE 

7.6.5.1 Description 

A flavour that constrains TEL.PERSON 

TEL.PHONE constrains TEL.PERSON so it must refer to some telephone based communication system with 
a person. 

7.6.5.2 Invariants 

 the URL scheme must be tel, x-text-fax, or x-text-tel. 

OCL for Invariants: 

   inv "Phone": scheme("tel") or scheme("x-text-fax") or  

  scheme("x-text-tel") 

 

7.6.6 TEL.EMAIL 

7.6.6.1 Description 

A flavour that constrains TEL.PERSON 

TEL.EMAIL constrains the TEL.PERSON type to be an email address. 



ISO/FDIS 21090:2009(E) 

46 © ISO 2009 – All rights reserved 

 

7.6.6.2 Invariants 

 the URL scheme must be mailto. 

OCL for Invariants: 

  inv "email only": scheme("mailto") 

 

7.6.7 II (Instance Identifier) 

7.6.7.1 Description 

Specializes ANY. 

An identifier that uniquely identifies a thing or object. 

EXAMPLES: object identifier for HL7 RIM objects, medical record number, order id, service catalogue item id, vehicle 
identification number (VIN), etc. Instance identifiers are usually defined based on ISO object identifiers. 

An identifier allows someone to select one record, object or thing from a set of candidates. Usually an 
identifier alone without any context is not usable. Identifiers are distinguished from concept descriptors as 
concept descriptors never identify an individual thing, although there may sometimes be an individual record 
or object that represents the concept. 

Information processing entities claiming direct or indirect conformance shall never assume that receiving 
applications can infer the identity of issuing authority or the type of the identifier from the identifier or 
components thereof. 

7.6.7.2 ISO/IEC 11404 syntax 

 type II = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   root : characterstring, 

   extension : characterstring, 

   identifierName : characterstring, 

   displayable : boolean, 

   scope: IdentifierScope, 

   reliability : IdentifierReliability 

 ) 

7.6.7.3 Attributes 

7.6.7.3.1 root : Uid: A unique identifier that guarantees the global uniqueness of the instance identifier. 

If root is populated, and there is no nullFlavor or extension, then the root is a globally unique identifier in its 
own right. In the presence of a non-null extension, the root is the unique identifier for the "namespace" of the 
identifier in the extension. This does not necessarily correlate with the organization that manages the issuing 
of the identifiers. A given organization may manage multiple identifier namespaces, and control over a given 
namespace may transfer from organization to organization over time while the root remains the same. 

This field can be either a DCE UUID, an Object Identifier (OID), or a special identifier taken from lists that may 
be published by ISO or HL7.  



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 47 
 

Comparison of root values is always case sensitive. UUIDs shall be represented in upper case, so UUID case 
should always be preserved. 

The root shall not be used to carry semantic meaning – all it does is ensure global computational uniqueness. 

7.6.7.3.2 extension: String: A character string as a unique identifier within the scope of the identifier root. 

The root and extension scheme means that the concatenation of root and extension shall be a globally unique 
identifier for the item that this II value identifies. 

Some identifier schemes define certain style options to their code values. For example, the U.S. Social 
Security Number (SSN) is normally written with dashes that group the digits into a pattern "123-12-1234". 
However, the dashes are not meaningful and an SSN can also be represented as "123121234" without the 
dashes. In the case where identifier schemes provide for multiple representations, HL7 or ISO may make a 
ruling about which is the preferred form and document that ruling where that respective external identifier 
scheme is recognised. 

If no extension attribute is provided in a non-null II, then the root is the complete unique identifier. If the root is 
not a complete unique identifier, and the extension is not known, then the II shall have a nullFlavor even if the 
root is populated. 

7.6.7.3.3 identifierName : String: This is a human-readable name for the namespace represented in the 
root. 

NOTE It is a descriptive name for the actual namespace. e.g. "California, U.S. Driver's License Number, 1970-". 

IdentifierName does not refer to the organization which issued the identifier (e.g. California Dept. of Motor 
Vehicles). It is intended for use as a human readable label when an identifier is to be displayed to a human 
user where an OID would not be meaningful. 

The identifier name has no computational value. IdentifierName can never modify the meaning of the root 
attribute. The purpose of the identifer name is to assist an unaided human interpreter of an II value to interpret 
the authority. Applications shall not attempt to perform any decision-making, matching, filtering or other 
processing based on the presence or value of this property. It is for display and development assistance only. 
All decision logic shall be based solely on the root and extension properties. Information processing entities 
claiming direct or indirect conformance may choose not to implement identifierName but shall not reject 
instances because identifierName is present. 

NOTE In general, it should only be used when an extension is present, allowing for a display such as "California, U.S. 

Driver's License Number, 1970-: 123456789". There are absolutely no guidelines for the contents of this text other than it 
should be completely descriptive of the namespace. E.g. "Driver's License" or even "California Driver's License" would not 

be ideal. However, formatting, capitalization, whitepace, language, etc. are completely up to the sender. 

7.6.7.3.4 displayable : Boolean: If the identifier is intended for human display and data entry (displayable 
= true) as opposed to pure machine interoperation (displayable = false). 

Information processing entities claiming direct or indirect conformance may choose not to implement 
displayable but shall not reject instances because displayable is present. 



ISO/FDIS 21090:2009(E) 

48 © ISO 2009 – All rights reserved 

 

7.6.7.3.5 scope: IdentifierScope : The scope in which the identifier applies to the object with which it is 
associated. 

If populated, the value of this attribute shall be taken from the HL7 IdentifierScope code system. The current 
values are: 

IdentifierScope Enumeration. OID: [not yet assigned] 

1  BUSN 
Business 
identifier 

An identifier whose scope is defined by business practices 
associated with the object. In contrast to the other scope 
identifiers, the scope of the use of the id is not necessarily 
restricted to a single object, but may be re-used for other 
objects closely associated with the object due to business 
practice. 

1  OBJ Object identifier 
The identifier associated with a particular object. It remains 
consistent as the object undergoes state transitions. 

1  VER Version identifier 

An identifier that references a particular object as it existed 
at a given point in time. 
 
The identifier shall change with each state transition on the 
object. I.e. The version identifier of an object prior to a 
"suspend" state transition is distinct from the identifier of 
the object after the state transition. Each version identifier 
can be tied to exactly one ControlAct event which brought 
that version into being (though the control act may never be 
instantiated). Applications that do not support versioning of 
objects shall ignore and not persist these ids to avoid 
confusion resulting from leaving the same identifier on an 
object that undergoes changes. 

1  VW 
View specific 
identifier 

An identifier for a particular snapshot of a version of the 
object. 
 
This identifies a view of the business object at a particular 
point in time, and as such identifies a set of data items that 
can be digitally signed and/or attested. This is in contrast to 
the version identifier which identifies the object at a specific 
time, but not the amount of information being asserted 
about the object. This identifier would be changed when a 
transformation of the information is performed (e.g. to add 
code translations, to provide a simplified textual rendering, 
or to provide additional information about the object as it 
existed at the specific point in time)  

ISO/IEC 11404 syntax for identifierScope attribute 

 type IdentifierScope = enumeration (BUSN, OBJ, VER, VW) 

 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 49 
 

7.6.7.3.6 reliability: IdentifierReliability : The reliability with which this identifier is known. This attribute 
may be used to assist with identifier matching algorithms. 

If populated, the value of this attribute SHALL be taken from the HL7 IdentifierReliability code system. The 
current values are: 

IdentifierReliability Enumeration. OID: [not yet assigned] 

1  ISS Issued by system 
The identifier was issued by the system responsible for 
constructing the instance. 

1  VRF 
Verified by 
system 

The identifier was not issued by the system responsible for 
constructing the instance, but the system that captured the id 
has verified the identifier with the issuing authority, or with 
another system that has verified the identifier. 

1  UNV 
Unverified by 
system 

The identifier was provided to the system that constructed the 
instance, but has not been verified. e.g. a driving licence 
entered manually into a system by a user. 

ISO/IEC 11404 syntax for identifierReliability attribute  

 type IdentifierReliability = enumeration (ISS, VRF, UNV) 

 

7.6.7.4 Equality 

Two instance identifiers are equal if and only if they are not nullFlavored, their root is equal, and their 
extensions are both null or equal. The displayable, identifierName, scope and reliability properties are ignored, 
though the scope and reliability properties may be used to determine whether the equality is significant in a 
given context. 

7.6.7.5 Invariants 

 a root shall be present if the II is not nullFlavored. 

OCL for Invariants: 

  inv "root is required": isNotNull implies root.oclIsDefined 

  

7.6.7.6 ISO 22220 Comments 

ISO 22220 defines four fields for subject of care identifiers: designation, geographic, issuer, and type. Only the 
first, the designation, matches the scope of the II type. The designation is defined as: 

a number or code assigned to a person by an organization, establishment, agency or domain in order 
to uniquely identify that person as a subject of health care within that health care organization, 
establishment, agency or domain. 

II fulfills this role by providing a unique identifier. When an II is used to identify a subject of care, the context of 
use should provide support for the scope, issuer and type properties. 

NOTE The II provides a field called "IdentifierName" but this field does not provide formal support for identifying the 

issuer of the identifier.  



ISO/FDIS 21090:2009(E) 

50 © ISO 2009 – All rights reserved 

 

7.6.7.7 Examples 

7.6.7.7.1 Driver's license 

<example xsi:type="II" root="2.16.840.1.113883.12.333" extension="45634353344" 

reliability="UNV" scope="BUSN"/> 

The OID 2.16.840.1.113883.12.333 has been issued by HL7 as a generic driver's license authority. The 
extension contains the actual driver's license number. The reliability is UNV – the value has been entered into 
the system, but the system cannot verify the number. The scope of the driver's license is BUSN, because the 
driver's license number may be used to identify several different objects associated with the same patient. 
This example uses the generic OID for a driver's license authority, but it is recommended not to use this in 
practice if possible because there are many driver's license authorities, and their issuing numbers will clash. 

7.6.7.7.2 US SSN 

<example xsi:type="II" root="2.16.840.1.113883.4.1" extension="123456789" 

reliability="UNV" scope="BUSN"/> 

Though the identifier is often formatted as 123-45-6789, the "-" should be removed so the right format is 
123456789. 

7.6.7.7.3 NHS Number 

<example xsi:type="II" root="2.16.840.1.113883.2.1.4.1" extension="9999999484" 

reliability="VRF" scope="BUSN"/> 

This is an example of an NHS number from England/Wales. The NHS root OID is 2.16.840.1.113883.2.1.4.1. 
Because the NHS number is reused in multiple instances of a clinical document for the same patient, and for 
many other records, it will generally not have scope = OBJ – except on the NHS master repository itself. 
Usually the scope will be BUSN. Most NHS systems maintain patient information interfaces with the master 
NHS patient registry, or with other systems that do, so the reliability in these cases is ―VRF‖. 

7.6.7.7.4 Australian Medicare Number  

<example xsi:type="II" root="1.2.36.174030967" extension="1234567892" 

reliability="VRF" scope="OBJ"/> 

This is an example of an Australian medicare number. The root is the business root oid for the issuing 
authority HIC. (This should be a further qualified oid, but they have not, as yet, published their own scheme for 
their oid space.) The reliability is "VRF" because the sending system has checked that this is the correct 
identity for the patient with HIC itself using one of their electronic interfaces, and the scope is OBJ because 
this number is only used for identifying the account associated with this patient's family by the HIC. 

7.6.7.7.5 Record identifier  

<example xsi:type="II" root="D6A7AB37-4220-4D80-9052-8A4959A203E3" 

reliability="ISS" scope="VER"/> 

An UUID issued by the sending system associated with the particular version of the record being represented 
in the instance. 

7.6.7.7.6 Lab number  

<example xsi:type="II" root="2.16.840.1.113883.19.5.34" extension="2345344" 

reliability="ISS" scope="OBJ"/> 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 51 
 

A laboratory identifier that identifies the report. This has scope=‖OBJ‖ and will be retained throughout the lab 
workflow as the sample is received, processed, reported and signed. This lab number is reported by the 
laboratory system itself which issued the identifier. 

7.6.7.7.7 ISO 13606 record component id  

<example xsi:type="II" root="2.16.840.1.113883.19.5.462" extension="976295765" 

reliability="VRF" scope="VER"/> 

ISO 13606-1 rc_id (record component id), which is persisted across EHR repositories but not re-used across 
different versions of the record, and not re-used between workflow state changes. Hence the scope is "VER". 
The reliability is VRF; in the context of ISO 13606 the use of ISS is not recommended as it can only be used 
by the primary issuing system, and this makes it unfeasible to attest to the record. 

The primary use of ISS is in patient management etc, where it can be used to help build 
linking/unlinking/merging workflows. 

7.6.7.7.8 Message snapshot  

<example xsi:type="DSET_II"> 

  <item root="2.16.840.1.113883.19.5.971" extension="763491"  

     reliability="VRF" scope="OBJ"/> 

  <item root="2.16.840.1.113883.19.5.972" extension="351324"  

     reliability="VRF" scope="VER"/> 

  <item root="0282CA34-2E4E-4B9D-82A5-BD2BF8497940" 

     reliability="ISS" scope="VW"/> 

</example> 

This example shows the full use of a DSET(II) in a message. The message carries a snapshot of an object in 
a class in the message, and the class has an attribute id : DSET(II). The information in in the class that carries 
the DSET(II) attribute is based on the object 763491 in the OID space 2.16.840.1.113883.19.5.971. The 
version the snapshot is based on is identified by the identifier 351324 in the OID space 
2.16.840.1.113883.19.5.972. Finally, the snapshot is given its own UUID identifier 0282CA34-2E4E-4B9D-
82A5-BD2BF8497940, which may be used if a system wished to record that particular snapshot it its audit trail. 

7.7 Name and address datatypes 

7.7.1 Overview 

These datatypes provide support for names and addresses. See Figure 6. 



ISO/FDIS 21090:2009(E) 

52 © ISO 2009 – All rights reserved 

 

 

Figure 6 — Name and address datatypes 

7.7.2 XP (name or address part) 

Abstract private type 

7.7.2.1 Description 

A part of a name or address. Each part is a character string that may be coded, and that also may have a 
nullFlavor. The string content shall always be provided whether a code is provided or not. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 53 
 

7.7.2.2 ISO/IEC 11404 syntax 

 type XP = class ( 

   nullFlavor : NullFlavor, 

   value : characterstring, 

   code : characterstring, 

   codeSystem : characterstring, 

   codeSystemVersion : characterstring, 

   language : characterstring, 

) 

7.7.2.3 Attributes 

7.7.2.3.1 nullFlavor : NullFlavor: If the part is not a proper value, indicates the reason. 

For further information concerning nullFlavor, see 7.3.3.3.1. 

7.7.2.3.2 value : String: The actual string value of the part. If no nullFlavor is provided, some content must 
be present in this attribute. 

7.7.2.3.3 code : String: A code assigned to the part by some coding system, if appropriate. 

7.7.2.3.4 codeSystem : String: The code system from which the code is taken. 

The choice of coding system depends on the part type defined in the concrete specializations. The 
codeSystem shall be populated if a code is populated. 

7.7.2.3.5 codeSystemVersion : String: The version of the coding system, if required. 

The codeSystem shall be populated if a codeSystemVersion is populated. 

7.7.2.3.6 language: Code: The human language of the content. Valid codes are taken from the IETF 
RFC 3066. If this attribute is null, the language may be inferred from elsewhere, either from the context or 
from unicode language tags, for example. 

While parts may be assigned a language, the meaning of the part is not dependent on the language, and 
applications shall not be required to indicate the linguistic origin of any name or address part. 

7.7.2.4 Equality 

There is no definition of equality for values of type XP. 

7.7.2.5 Invariants 

 if code has a value then codeSystem shall have a value; 

 codeSystemVersion can only have a value if codeSystem has a value. 

OCL for Invariants: 

  def: let isNull : Boolean = nullFlavor.oclIsDefined 

  def: let isNotNull : Boolean = not isNull 

 

  inv "code requires codeSystem": code.oclIsDefined implies  

  codeSystem.oclIsDefined 

  inv "codeSystemVersion only if codeSystem":  

  codeSystemVersion.oclIsDefined implies  

  codeSystem.oclIsDefined 

 

http://www.ietf.org/rfc/rfc3066.txt


ISO/FDIS 21090:2009(E) 

54 © ISO 2009 – All rights reserved 

 

7.7.3 ADXP (address part) 

7.7.3.1 Description 

Specializes XP. 

A part that may have a type-tag signifying its role in the address. Typical parts that exist in about every 
address are street, house number or post box, postal code, city, country but other roles may be defined 
regionally, nationally, or on an enterprise level (e.g. in military addresses). 

Addresses are usually broken up into lines, which may be indicated by special line-breaking delimiter 
elements (e.g., DEL). 

7.7.3.2 ISO/IEC 11404 Syntax 

 type ADXP = class ( 

   nullFlavor : NullFlavor, 

   value : characterstring, 

   code : characterstring, 

   codeSystem : characterstring, 

   codeSystemVersion : characterstring, 

   language : characterstring, 

   type : AddressPartType, 

) 

7.7.3.3 Attributes 

7.7.3.3.1 type : AddressPartType: Whether an address part names the street, city, country, postal code, 
post box, etc. 

If the type is NULL the address part is unclassified and would simply appear on an address label as is. 

If populated, the value of this attribute shall be taken from the HL7 AddressPartType code system. The current 
values are: 

AddressPartType Enumeration. OID: 2.16.840.1.113883.5.16 

1  AL Address line 
An address line is for either an additional locator, a delivery 

address or a street address. An address generally has only a 
delivery address line or a street address line, but not both. 

2    ADL 
Additional 

locator 

This can be a unit designator, such as apartment number, 
suite number or floor. There may be several unit designators 
in an address (e.g., "3rd floor, Appt. 342"). This can also be a 

designator pointing away from the location, rather than 
specifying a smaller location within some larger one 

(e.g., Dutch "t.o." means "opposite to" for house boats located 
across the street facing houses). 

3      UNID Unit identifier 
The number or name of a specific unit contained within a 

building or complex, as assigned by that building or complex. 

3      UNIT 
Unit 

designator 
Indicates the type of specific unit contained within a building or 

complex, e.g. apartment, floor. 

2    DAL 
Delivery 

address line 

A delivery address line is frequently used instead of breaking 
out delivery mode, delivery installation, etc. An address 

generally has only a delivery address line or a street address 
line, but not both. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 55 
 

3      DINST 
Delivery 
installation 
type 

Indicates the type of delivery installation (the facility to which 
the mail will be delivered prior to final shipping via the delivery 
mode) e.g., post office, letter carrier depot, community mail 
centre, station, etc. 

3      DINSTA 
Delivery 
installation 
area 

The location of the delivery installation, usually a town or city, 
and only required if the area is different from the municipality. 
Area to which mail delivery service is provided from any postal 
facility or service such as an individual letter carrier, rural route 
or postal route. 

3      DINSTQ 
Delivery 
installation 
qualifier 

A number, letter or name identifying a delivery installation, 
e.g., for Station A, the delivery installation qualifier would be 
"A". 

3      DMOD Delivery mode 
Indicates the type of service offered, method of delivery, e.g., 
post office box, rural route, general delivery, etc. 

3      DMODID 
Delivery mode 
identifier 

Represents the routing information such as a letter carrier 
route number. It is the identifying number of the designator 
(the box number or rural route number). 

2    SAL 
Street address 
line 

A street address line is frequently used instead of breaking out 
building number, street name, street type, etc. An address 
generally has only a delivery address line or a street address 
line, but not both. 

3      BNR 
Building 
number 

The number of a building, house or lot alongside the street. 
Also known as "primary street number". This does not number 
the street but rather the building. 

4        BNN 
Building 
number 
numeric 

The numeric portion of a building number. 

4        BNS 
Building 
number suffix 

Any alphabetic character, fraction or other text that may 
appear after the numeric portion of a building number. 

3      STR Street name The name of the street, including the type. 

4        STB 
Street name 
base 

The base name of a roadway or artery recognised by a 
municipality (excluding street type and direction). 

4        STTYP Street type 
The designation given to the street. (e.g. Street, Avenue, 
Crescent, etc.). 

3      DIR Direction Direction (e.g., N, S, W, E). 

2    INT Intersection 
Denotes that the actual address is located at or close to the 
intersection of two or more streets. 

1  CAR Care of  

The name of the party who will take receipt at the specified 
address, and will take on responsibility for ensuring delivery to 
the target recipient. 
 
NOTE This is included only to support the convention of writing 
c/- address lines. This item is not appropriate for use when 

information is entrusted to one party on behalf of another in some 
significant way. 

1  CEN Census tract A geographic sub-unit delineated for demographic purposes. 

1  CNT Country Country. 

1  CPA 
County or 
parish 

A sub-unit of a state or province. (49 of the United States of 
America use the term "county;" Louisiana uses the term 
"parish"). 



ISO/FDIS 21090:2009(E) 

56 © ISO 2009 – All rights reserved 

 

1  CTY Municipality 
The name of the city, town, village, or other community or 
delivery centre. 

1  DEL Delimiter 
Delimiters are printed without framing white space. If no value 
component is provided, the delimiter appears as a line break. 

1  POB Post box A numbered box located in a post station. 

1  PRE Precinct A subsection of a municipality. 

1  STA 
State or 
province 

A sub-unit of a country with limited sovereignty in a federally 
organized country. 

1  ZIP Postal code 
A postal code designating a region defined by the postal 
service. 

1  DPID 
Delivery point 
identifier 

A value that uniquely identifies the postal address. 

NOTE The hierarchical nature of this code system shows composition rather than subsumption, 

e.g. "Street Name" is part of "Street Address Line". 

ISO/IEC 11404 Syntax for type Attribute 

 type AddressPartType = enumeration (AL, ADL, UNID, UNIT, DAL, DINST, 

DINSTA, DINSTQ, DMOD, DMODID, SAL, BNR, BNN, BNS, STR, STB, STTYP, 

DIR, INT, CAR, CEN, CNT, CPA, CTY, DEL, POB, PRE, STA, ZIP) 

7.7.3.4 Equality 

Two ADXP values are equal if their type and value attributes are equal. The code attributes and language are 
ignored. 

NOTE Clarification: two type attributes of null are considered equal. 

7.7.3.5 Invariants 

 If the part is nonNull, the value cannot be empty unless the part type is DEL. 

OCL for Invariants: 

  inv "value is required": isNotNull implies value.size > 0 

 

7.7.3.6 Binding 

For the code codeSystem properties inherited from XP, the part type CNT (country) is bound to the codes 
defined in ISO 3166, either the 2- or 3-letter alphabetic codes or the numeric codes. Conformance statements 
may specify bindings for other part types or restrict the choice of codes for country. 

7.7.4 AD (address) 

7.7.4.1 Description 

Specializes ANY. 

Mailing and home or office addresses. AD is primarily used to communicate data that will allow printing mail 
labels, or that will allow a person to physically visit that address. The postal address datatype is not supposed 
to be a container for additional information that might be useful for finding geographic locations (e.g., GPS 
coordinates) or for performing epidemiological studies. Such additional information should be captured by 
other, more appropriate data structures. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 57 
 

Addresses are essentially sequences of address parts, but add a "use" code and a valid time range for 
information about if and when the address can be used for a given purpose. 

7.7.4.2 ISO/IEC 11404 Syntax 

 type AD = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   part : Sequence(ADXP), 

   use : Set(PostalAddressUse), 

   useablePeriod : QSET(TS), 

   isNotOrdered : boolean 

 ) 

7.7.4.3 Attributes 

7.7.4.3.1 part : Sequence(ADXP): A sequence of address parts, such as street or post office box, city, 
postal code, country, etc. 

7.7.4.3.2 use : Set(PostalAddressUse): A set of codes advising a system or user which address in a set 
of like addresses to select for a given purpose. 

An address without specific use code might be a default address useful for any purpose, but an address with a 
specific use code would be preferred for that respective purpose. 

If populated, the values contained in this attribute shall be taken from the HL7 PostalAddressUse code system. 
The current values are: 

PostalAddressUse Enumeration. OID: 2.16.840.1.113883.5.1012 

1 AddressUse 

2    H Home address 

A communication address at a home; attempted contacts for 
business purposes might intrude privacy and chances are one 
will contact family or other household members instead of the 
person one wishes to call. Typically used with urgent cases, or 
if no other contacts are available. 

3      HP Primary home The primary home, to reach a person after business hours. 

3      HV Vacation home A vacation home, to reach a person while on vacation. 

2    WP Work place 
An office address. First choice for business related contacts 
during business hours. 

3      DIR Direct 

Indicates a work place address or telecommunication address 
that reaches the individual or organization directly without 
intermediaries. For 'telephones, often referred to as a ‗private 
line‘. 

3      PUB Public 

Indicates a work place address or telecommunication address 
that is a "standard" address which may reach a reception 
service, mail-room, or other intermediary prior to the target 
entity. 

2    BAD Bad address A flag indicating that the address is bad, in fact, useless. 



ISO/FDIS 21090:2009(E) 

58 © ISO 2009 – All rights reserved 

 

2    PHYS 
Physical visit 
address 

Used primarily to visit an address. 

2    PST Postal address Used to send mail. 

2    TMP 
Temporary 
address 

A temporary address, may be good for visit or mailing. An 
address history can provide more detailed information. 

1 
AddressRepresentationUse. Identifies the different representations of the address. The 
representation may affect how the address is used (e.g. use of ideographic for formal 
communications). 

2    ABC Alphabetic Alphabetic transcription of name (Japanese: romaji). 

2    IDE Ideographic 
Ideographic representation of name (e.g., Japanese kanji, 
Chinese characters). 

2    SYL Syllabic 
Syllabic transcription of name (e.g., Japanese kana, Korean 
hangul). 

1  SRCH Search type uses A name intended for use in searching or matching. 

2    SNDX Soundex An address spelled according to the SoundEx algorithm. 

2    PHON Phonetic 
The address as understood by the data enterer, i.e. a close 
approximation of a phonetic spelling of the address, not based 
on a phonetic algorithm. 

ISO/IEC 11404 Syntax for the postalAddressUse attribute 

 type PostalAddressUse = enumeration (H, HP, HV, WP, DIR, PUB, BAD, 

TMP, ABC, IDE, SYL, PHYS, PST, SRCH, SNDX, PHON) 

 

7.7.4.3.3 useablePeriod : QSET(TS): A General Timing Specification (GTS) specifying the periods of time 
during which the address can be used. This is used to specify different addresses for different times of the 
week or year. 

7.7.4.3.4 isNotOrdered : Boolean: A boolean value specifying whether the order of the address parts is 
known or not. While the address parts are always a sequence, the order in which they are presented may or 
may not be known to be true or important. Where this matters, the isNotOrdered property can be used to 
convey this information. The default value for isNotOrdered is false. 

7.7.4.4 Equality 

Two address values are considered equal if they contain the same address parts, independent of ordering. 
Use code, useablePeriod and isNotOrdered are excluded from the equality test. 

NOTE 1 Even if isNotOrdered is false – it is known that the order of the address parts is representationally significant – 
the order of the parts is irrelevant for checking equality of addresses. 

NOTE 2 Two values that refer to the same address but that are encoded using different address parts (perhaps to 
different levels of detail) would not be considered equal. 

7.7.4.5 Invariants 

 either the AD is nullFlavored or it has at least one part. 

OCL for Invariants: 

  inv "null or parts": isNull xor part->notEmpty 

  inv "no updateMode or History on AD attributes": 

 noUpdateOrHistory(useablePeriod) 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 59 
 

7.7.4.6 ISO 22220 comments 

The various address parts defined by ISO 22220, map to address part types, and the address type maps to 
the use attribute. The start and end date accuracy indicators are partially supported by the precision of the 
dates provided. 

7.7.4.7 Examples 

7.7.4.7.1 Address with layout 

<example xsi:type="AD" use="WP"> 

   <part value="1050 W Wishard Blvd" /> 

   <part type="DEL"/> 

   <part value="RG 5th floor"/> 

   <part type="DEL"/> 

   <part value="Indianapolis, IN 46240"/> 

</example> 

This work address consists of 3 unknown parts with 2 line delimiters. None of the parts is labelled with regard 
to their semantic significance.  

7.7.4.7.2 Address with types  

<example xsi:type="AD" use="WP"> 

   <part type="AL" value="1050 W Wishard Blvd"/> 

   <part type="AL" value="RG 5th floor"/> 

   <part type="CTY" value="Indianapolis"/> 

   <part type="STA" value="IN"/> 

   <part type="ZIP" value="46240"/> 

</example> 

This is the same address using standard typing rather than a presentation focus. This is probably the most 
common form of presentation for addresses – a series of address lines followed by city, state, zip and possibly 
country. 

NOTE Although this presentation of the address suggests that lines are required after the two address lines, this is 

not implied by this example. See 7.7.4.8. 

7.7.4.7.3 Line types 

<example xsi:type="AD" use="WP"> 

   <part type="SAL" value="1050 W Wishard Blvd"/> 

   <part type="ADL" value="RG 5th floor"/> 

   <part type="CTY" value="Indianapolis"/> 

   <part type="STA" value="IN"/> 

   <part type="ZIP" value="46240"/> 

</example> 

This is the same address from a system that differentiates between different line types. 

7.7.4.7.4 Fully typed addresses 

<example xsi:type="AD" use="WP"> 

   <part type="BNR" value="1050"/> 

   <part type="DIR" value="W"/> 

   <part type="STB" value="Wishard"/> 

   <part type="STTYP" value="Blvd"/> 

   <part type="ADL" value="RG 5th floor"/> 

   <part type="CTY" value="Indianapolis"/> 

   <part type="STA" value="IN"/> 

   <part type="ZIP" value="46240"/> 

</example> 



ISO/FDIS 21090:2009(E) 

60 © ISO 2009 – All rights reserved 

 

The same address fully broken down; the form above is not used in the USA. However, it is useful in Germany, 
where many systems keep house number as a distinct field. 

 

<example xsi:type="AD" use="HP"> 

   <part type="STR" value="Windsteiner Weg"/> 

   <part type="BNR" value="54a"/> 

   <part type="CNT" code="DEU" codeSystem=" 1.0.3166.1.2"  
      value="D"/> 

   <part type="ZIP" value="14165"/> 

   <part type="CTY" value="Berlin"/> 

</example> 

This is a home address in a standard German format. The country has been coded in ISO 3166 to assist with 
interoperability. 

7.7.4.7.5 Unknown addresses 

<example xsi:type="AD" use="WP" nullFlavor="UNK"/> 

 

The work address is unknown. 

7.7.4.8 Presenting addresses 

The primary purpose of an address is to be presented on a delivery label affixed to an envelope. A fully 
specified address – one that includes specified line breaks – can be presented directly by simply presenting 
the text of the various parts with whitespace separating them, and following the explicit line breaks. If the 
elements are moved into the xhtml namespace, the AD content can be treated as html directly. 

For this reason, the address should always be generated with appropriate line breaks included in the address. 
This enables applications that do not understand the semantics of the address to reproduce it correctly. 

However because there is no single presentation model for addresses, applications may ignore the explicitly 
specified line breaks in addresses – they are not bound to follow the presentation as specified in any particular 
address. 

7.7.5 ENXP (Entity Name Part) 

7.7.5.1 Description  

Specializes XP. 

A part that may have a type code signifying the role of the part in the whole entity name, and qualifier codes 
for more detail about the name part type. (Typical name parts for person names are given names, and family 
names, titles, etc..) 

7.7.5.2 ISO/IEC 11404 syntax 

 type ENXP = class ( 

   nullFlavor : NullFlavor, 

   value : characterstring, 

   code : characterstring, 

   codeSystem : characterstring, 

   codeSystemVersion : characterstring, 

   language : characterstring, 

   type : EntityNamePartType, 

   qualifier : Set(EntityNamePartQualifier) 

 ) 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 61 
 

7.7.5.3 Attributes 

7.7.5.3.1 type : EntityNamePartType: Indicates whether the name part is a given name, family name, 
prefix, suffix, etc. 

Not every name part must have a type code, if the type code is unknown, not applicable, or simply undefined 
this is expressed by a null value (type.isNull). For example, a name may be "Rogan Sulma" and it might not 
be clear which one is a given name or which is a last name, or whether Rogan is a title. 

If populated, the value of this attribute shall be taken from the HL7 EntityNamePartType2 code system. The 
current values are: 

EntityNamePartType Enumeration. OID: 2.16.840.1.113883.5.1121  

1  FAM Family 
Family name, this is the name that links to the genealogy. In 
some cultures (e.g. Eritrea) the family name of a son is the 
first name of his father. 

1  GIV Given 

Given name. 
NOTE Not to be called "first name" since given names do not 
always come first. 

1  TITLE Title 

Part of the name that is acquired as a title due to academic, 
legal, employment or nobility status etc. 

NOTE Title name parts include name parts that come after the 

name, such as qualifications. 

1  DEL Delimiter 
A delimiter has no meaning other than being literally printed 
in this name representation. A delimiter has no implicit 
leading and trailing white space. 

ISO/IEC 11404 Syntax for the entityNamePartType attribute 

 type EntityNamePartType = enumeration (FAM, GIV, TITLE, DEL) 

 

When a name is hyphenated, such as Mary-Ann, it may be ambigious whether to use a delimiter separating 
two name parts, or a single name part with a hyphen in it. As a rule of thumb, if each name part should 
contribute an initial when the name is presented as initials, then a delimiter should be used to separate two 
parts. 

7.7.5.3.2 qualifier : Set(EntityNamePartQualifier): The qualifier is a set of codes each of which specifies 
a certain subcategory of the name part in addition to the main name part type. 

EXAMPLE: A given name can be flagged as a nickname (CL), a family name might be a name acquired by marriage 
(SP) or a name from birth (BR). 



ISO/FDIS 21090:2009(E) 

62 © ISO 2009 – All rights reserved 

 

If populated, the values contained in this attribute shall be taken from the HL7 EntityNamePartQualifier2 code 
system. The current values are:  

EntityNamePartQualifier Enumeration. OID: 2.16.840.1.113883.5.1122  

1  LS Legal status 
For organizations a suffix indicating the legal status, e.g., 
"Inc.", "Co.", "AG", "GmbH", "B.V." "S.A.", "Ltd." Etc. 

1 TitleStyles: Extra information about the style of a title 

2    AC Academic 
Indicates that a prefix like "Dr." or a suffix like "M.D." or "Ph.D." 
is an academic title. 

2    NB Nobility 

In Europe and Asia, there are still people with nobility titles 
(aristocrats). German "von" is generally a nobility title, not a 
mere voorvoegsel. Others are "Earl of" or "His Majesty King 
of..." etc. Rarely used nowadays, but some systems do keep 
track of this. 

2    PR Professional 
Primarily in the British Imperial culture people tend to have an 
abbreviation of their professional organization as part of their 
credential suffices. 

2    HON Honorific 
An honorific such as ―The Right Honourable‖ or 
―Weledelgeleerde Heer‖. 

1  BR Birth 

A name that a person was given at birth or established as a 
consequence of adoption. 
 

NOTE This is not used for temporary names assigned at birth 

such as ―Baby of Smith‖ – which is just a name with a use code of 

―TEMP‖. 

1  AD Acquired 

A name part a person acquired. 
 
The name part may be acquired by adoption, or the person 
may have chosen to use the name part for some other reason. 
 

NOTE This differs from an other/psuedonym/alias in that an 

acquired name part is acquired on a formal basis rather than an 

informal one (e.g. registered as part of the official name). 

2    SP Spouse 
The name assumed from the partner in a marital relationship. 
Usually the spouse‘s family name. No inference about gender 
may be made from the existence of spouse names. 

1  MID Middle Name 

Indicates that the name part is a middle name. 

In general, the English "middle name" concept is all of the 
given names after the first. This qualifier may be used to 
explicitly indicate which given names are considered to be 
middle names.  

The middle name qualifier may also be used with family 
names. This is a Scandinavian use case, matching the 
concept of ―mellomnavn‖/―mellannamn‖. There are specific 
rules that indicate what names may be taken as a mellannamn 
in different Scandinavian countries. 

1  CL Callme 
Callme is used to indicate which of the various name parts is 
used when interacting with the person. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 63 
 

1  IN Initial 

Indicates that a name part is just an initial. Initials do not imply 
a trailing period since this would not work with non-Latin 
scripts. Initials may consist of more than one letter, e.g., "Ph." 
could stand for "Philippe" or "Th." for "Thomas". 

1  PFX Prefix 
A prefix has a strong association to the immediately following 
name part. A prefix has no implicit trailing white space 
(although it has implicit leading white space). 

1  SFX Suffix 
A suffix has a strong association to the immediately preceding 
name part. A suffix has no implicit leading white space 
(although it has implicit trailing white space). 

ISO/IEC 11404 Syntax for the entityNamePartQualifier attribute 

 type EntityNamePartQualifier = enumeration (LS, AC, NB, PR, HON, BR, 

AD, SP, MID, CL, IN, PFX, SFX) 

The Scandinavian ―Mellomnavn/Mellannamn‖ translates to ―middle name‖ but does not match the English 
"middle name" concept. The general English "middle name" concept is simply all of the given names after the 
first. The qualifiers PFX and SFX are mutually incompatible. It is not legal to use both on the same part type. It 
is not necessary to label the name part following a prefix as a suffix or vice versa. 

NOTE Initials are allowed to be more than one letter specifically to cater for linguistic norms in the applicable 
language. Abbreviations, such as Dr. for Doctor are not initials. 

7.7.5.4 Equality 

Two ENXP values are equal if their type and value attributes are equal. The code attributes, language and 
qualifier are ignored. 

NOTE Clarification: two type attributes of null are considered equal. 

7.7.5.5 Invariants 

 if the part is nonNull, the value cannot be empty. 

OCL for Invariants: 

  inv "value is required": isNotNull implies value.size > 0 

  

7.7.5.6 Binding 

Conformance statements may specify bindings for the various part types. 



ISO/FDIS 21090:2009(E) 

64 © ISO 2009 – All rights reserved 

 

7.7.5.7 Implementation Notes 

There is a relationship between the part type and the qualifiers which can be used. This table summarizes the 
qualifiers that can be used with the different part types: 

 
FAM 

(family) 
GIV 

(given) 
TITLE 
(title) 

DEL 
(delimiter) 

null 

LS (legal status)      

AC (academic)      

NB (nobility)      

PR (professional)      

HON (honorifc)      

BR (birth)      

AD (adopted)      

SP (spouse)      

MID (middle name)      

CL (call me)      

IN (initial)      

PFX (prefix)      

SFX (suffix)      

  = This combination is allowed, though it is not expected to be in common usage. 

 = This combination is allowed, and it is expected that this combination will be 

 encountered in practice. 

7.7.6 EN (entity name) 

7.7.6.1 Description 

Specializes ANY. 

A name for a person, organization, place or thing. 

EXAMPLES: "Jim Bob Walton, Jr.", "Health Level Seven, Inc.", "Lake Tahoe", etc. An entity name can be as simple as 

a character string or can consist of several entity name parts, such as, "Jim", "Bob", "Walton", and "Jr.", "Health Level 
Seven" and "Inc.". 

Entity names are essentially sequences of entity name parts, but add a "use" code and a valid time range for 
information about when the name was used and how to choose between multiple aliases that may be valid at 
the same time. 

7.7.6.2 ISO/IEC 11404 syntax 

 type EN = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   part : Sequence(ENXP), 

   use : Set(EntityNameUse) 

 ) 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 65 
 

7.7.6.3 Attributes 

7.7.6.3.1 part : Sequence(ENXP): A sequence of name parts, such as given name or family name, prefix, 
suffix, etc. 

7.7.6.3.2 use : Set(EntityNameUse): A set of codes advising a system or user which name in a set of 
names to select for a given purpose. 

A name without specific use code might be a default name useful for any purpose, but a name with a specific 
use code would be preferred for that respective purpose. Names should not be collected without at least one 
use code, but names may exist without use code, particularly for legacy data. 

If populated, the values contained in this attribute shall be taken from the HL7 EntityNameUse2 code system. 
The current values are:  

EntityNameUse Enumeration. OID: 2.16.840.1.113883.5.1120 

1 
RepresentationUse. Identifies the different representations of a name. The representation may 
affect how the name is used. (E.g. use of Ideographic for formal communications) 

2    ABC Alphabetic Alphabetic transcription of name (Japanese: romaji). 

2    IDE Ideographic 
Ideographic representation of name (e.g., Japanese kanji, 
Chinese characters). 

2    SYL Syllabic 
Syllabic transcription of name (e.g., Japanese kana, Korean 
hangul). 

1  C Customary Known as/conventional/the one you normally use. 

1  OR 
Official registry 
name 

The formal name as registered in an official (government) 
registry, but which name might not be commonly used. May 
correspond to the concept of legal name. 

1  T Temporary 
A temporary name. A name valid time can provide more 
detailed information. This may also be used for temporary 
names assigned at birth or in emergency situations. 

1 Assumed: A name that a person has assumed or has been assumed to them 

2    I Indigenous/Tribal e.g. Chief Red Cloud. 

2    P 
Other/ 
pseudonym/alias 

A non-official name by which the person is sometimes known. 
(This may also be used to record informal names such as a 
nickname.) 

2    ANON Anonymous 
Anonymous assigned name (used to protect a person's 
identity for privacy reasons). 

2    A Business Name 

A name used in a professional or business context. 

EXAMPLES: Continuing to use a maiden name in a professional 

context, or using a stage performing name (some of these names are 

also pseudonyms). 

2    R Religious 
A name assumed as part of a religious vocation. e.g. Sister 
Mary Francis, Brother John  

1  OLD No longer in use 

This name is no longer in use. 

NOTE Names can also carry valid time ranges. This code is used 

to cover the situations where it is known that the name is no longer 

valid, but no particular time range for its use is known. 



ISO/FDIS 21090:2009(E) 

66 © ISO 2009 – All rights reserved 

 

2    DN Do not use 

This name should no longer be used when interacting with the 
person (i.e. in addition to no longer being used, the name 
should not even be mentioned when interacting with the 
person). 

NOTE applications are not required to compare names labelled 

―Do not use‖ and other names in order to eliminate name parts that 

are common between the other name and a name labelled ―Do not 

use‖. 

1  M Maiden name 

A name used prior to marriage. 

Marriage naming customs vary greatly around the world. This 
name use is for use by applications that collect and store 
―maiden‖ names. Though the concept of maiden name is often 
gender specific, the use of this term is not gender specific. The 
use of this term does not imply any particular history for a 
person‘s name, nor should the maiden name be determined 
algorithmically. 

1  SRCH Search type uses A name intended for use in searching or matching. 

2    PHON Phonetic 
The name as understood by the data enterer, i.e. a close 
approximation of a phonetic spelling of the name, not based 
on a phonetic algorithm. 

ISO/IEC 11404 syntax for the entityNameUse attribute 

 type EntityNameUse = enumeration (C, OR, T, I, P, A, R, OLD, DN, M, 

SRCH, PHON, ABC, SYL, IDE) 

 

The use and qualifier codes are both used as sets, where more than one of each type may be used. This 
allows syntactically well-formed but semantically absurd constructions. The following rules apply:  

 a single entity name may not have more than one NameRepresentationUse code; 

 T, ABC, SYL and IDE should be accompanied by some other name use code; 

 an organization entity name part qualifier code of "LS" may not be combined with any other qualifiers 
except PFX or SFX; 

 the qualifiers BR and AD (or SP) are mutually incompatible. 

7.7.6.4 Equality 

Two name values are considered equal if their canonical forms contain the same name parts in the same 
order. Use code and valid time are excluded from the equality test. 

7.7.6.5 Invariants 

 either the EN is nullFlavored or it has at least one part. 

OCL for Invariants: 

  inv "null or parts": isNull xor part-> notEmpty 

 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 67 
 

7.7.6.6 Operations 

7.7.6.6.1 canonical():EN: The Entity Name with a standard ordering imposed on the parts. 

The canonical form is primarily defined for the purposes of defining equality, and may differ from the socially 
accepted order for the name parts in various cultures around the world. 

The canonical form contains all the part types except for the delimiters, in the following order: 

1) prefixes with qualifier title; 

2) given names, with any prefixes and/or suffixes associated with the given names; 

3) family names, with any prefixes and/or suffixes associated with the family names; 

4) suffixes with qualifier title. 

Each list of part types shall be in the order of the original name. 

7.7.6.7 ISO 22220 comments 

The various name groups defined in ISO 22220 map directly to the ENXP types. The conditional use and 
name usage components map to the use attribute. The context of use of the EN may need to allow for multiple 
EN values (as some kind of collection) to support all the functionality described in ISO 22220. 

7.7.6.8 Examples 

7.7.6.8.1 Simple example 

<example xsi:type="EN" > 

   <part type="GIV" value="Adam"/> 

   <part type="GIV" value="A."/> 

   <part type="FAM" value="Everyman"/> 

</example> 

A very simple encoding of "Adam A. Everyman". 

7.7.6.8.2 Complex germanic example 

<example xsi:type="EN.PN"> 

   <part type="GIV" qualifier="AC" value="Dr. phil."/> 

   <part type="GIV" value="Regina"/> 

   <part type="GIV" value="Johanna"/> 

   <part type="GIV" value="Maria"/> 

   <part type="TITLE" qualifier="PFX NB" value="Gräfin"/> 

   <part type="FAM" qualifier="BR" value="Hochheim"/> 

   <part type="DEL" value="-"/> 

   <part type="FAM" qualifier="SP" value="Weilenfels"/> 

   <part type="TITLE" qualifier="SFX PR" value="NCFSA" /> 

</example> 

Dr.phil. Regina Johanna Maria Gräfin Hochheim-Weilenfels, NCFSA. This example shows extensive use of 
multiple given names, prefixes, suffixes, for academic degrees, nobility titles, and professional designations. 

7.7.6.8.3 Organization name 

<example xsi:type="EN.TN"> 

   <part value="Health Level Seven, Inc"/> 

</example> 

An organization name, "Health Level Seven, Inc." in simple string form: (Trivial Name – EN.TN). 



ISO/FDIS 21090:2009(E) 

68 © ISO 2009 – All rights reserved 

 

 

<example xsi:type="EN.ON"> 

   <part value="Health Level Seven, "/> 

   <part type="TITLE" qualifier="SFX LS" value="Inc."/> 

</example> 

As a fully parsed name. 

7.7.6.8.4 Japanese example 

<example xsi:type="EN" use="IDE"> 

   <part type="FAM" value="木村"/> 

   <part type="GIV" value="通男"/> 

</example> 

<example xsi:type="EN" use="SYL"> 

   <part type="FAM" value="きむら"/> 

   <part type="GIV" value="みちお"/> 

</example> 

<example xsi:type="EN" use="ABC"> 

   <part type="FAM" value="KIMURA"/> 

   <part type="GIV" value="MICHIO"/> 

</example> 

A Japanese name in the three forms: ideographic (Kanji), syllabic (Hiragana) and alphabetic (Romaji). 

7.7.6.8.5 Russian example 

<example xsi:type="EN"> 

   <part type="FAM" value="ЕМЕЛИН"/> 

   <part type="GIV" value="ИВАН"/> 

   <part type="GIV" value="ВЛАДИМИРОВИЧ"/> 

</example> 

<example xsi:type="EN"> 

   <part type="FAM" value="EMELIN"/> 

   <part type="GIV" value="IVAN"/> 

</example> 

A russian name in cyrillic with a latin alphabet transliteration. In Russian usage, these names are known as 
the domestic and foreign names respectively. Systems should determine the appropriate form for a particular 
use based on the character set of the name parts. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 69 
 

7.7.6.8.6 Scandinavian examples 

<example xsi:type="EN" use="OR"> 

   <part type="GIV" value="Jan"/> 

   <part type="GIV" value="Erik"/> 

   <part type="FAM" qualifier="MID" value=" Östlund"/> 
   <part type="FAM" value="Erikson"/> 

</example> 

<example xsi:type="EN"> 

   <part type="GIV" value="Jan"/> 

   <part type="FAM" value="Erikson"/> 

</example> 

Erikson is the family name. Jan Erik are the given names, and Östlund the family name of the mother, which 
is taken as a Mellannamn. 

<example xsi:type="EN" use="T">  

  <!—- Use could be OR+OLD, depends how record keeping is done --> 

   <part type="GIV" value="Margrete Jente"/> 

   <part type="FAM" value="Hansen"/> 

</example> 

 

Jan Erikson has a daughter, Karin, with his wife Margrete Hansen. The first communications of the new born 
name is ―Margrete Jente‖ (Margrete‘s Girl) and the mother's family name, not the given name (Karin). The 
father's Family name is not used at all. This is a known temporary name assigned directly after the birth of 
the child. 

<example xsi:type="EN" use="OR C"> 

   <part type="GIV" value="Karin"/> 

   <part type="FAM" qualifier="MID" value="Hansen"/> 

   <part type="FAM" value="Erikson"/> 

</example> 

The baby's name is subsequently changed to the fathers' family name, and to use the mother's name as 
mellomnamn. 

<example xsi:type="EN" use="OR"> 

   <part type="GIV" value="Karin"/> 

   <part type="FAM" qualifier="MID" value="Erikson"/> 

   <part type="FAM" qualifier="SP" value="Berg"/> 

</example> 

<example xsi:type="EN" use="C"> 

   <part type="GIV" value="Karin"/> 

   <part type="FAM" value="Berg"/> 

</example> 

Karin gets married to Per Berg, and decides to adopts Berg as her family name, and also decides to use 
Erikson as the mellom navn. 

NOTE Karin could have chosen to use another mellom navn, e.g. the family name of her mother, her father or other 

family names as specified by naming laws of the country in question. 

7.7.6.8.7 Nickname/informal name examples 

<example xsi:type="EN"> 

   <part type="GIV" value="Peter"/> 

   <part type="GIV" qualifier="CL" value="James"/> 

   <part type="FAM" value="Chalmers"/> 

</example> 

The full name is Peter James Chalmers. The person prefers to be called by James (not ―Jim‖ – no, don‘t call 
him that). 

<example xsi:type="EN" use="OR"> 



ISO/FDIS 21090:2009(E) 

70 © ISO 2009 – All rights reserved 

 

   <part type="GIV" value="David"/> 

   <part type="GIV" value="Woodford"/> 

   <part type="FAM" value="Smith"/> 

</example> 

<example xsi:type="EN" use="C"> 

   <part type="GIV" value="Woody"/> 

   <part type="FAM" value="Smith"/> 

</example> 

The person‘s proper name is David Woodford Smith, but he prefers to be called ―Woody‖. 

<example xsi:type="EN" use="OR"> 

   <part type="GIV" value="Uy"/> 

   <part type="GIV" value="Dung"/> 

   <part type="FAM" value="Nguyen"/> 

</example> 

<example xsi:type="EN" use="C"> 

   <part type="GIV" value="Dennis"/> 

   <part type="FAM" value="Nguyen"/> 

</example> 

The person was born as ―Uy Dung Nguyen‖, but when he migrated to a western nation, he choose to use 
Dennis as his normal ―westernized‖ name. This is a common practice for immigrants. 

 

<example xsi:type="EN" use="OR C"> 

   <part type="GIV" value="Grahame"/> 

   <part type="GIV" value="David"/> 

   <part type="FAM" value="Grieve"/> 

</example> 

<example xsi:type="EN" use="P"> 

   <part type="GIV" value="Junior"/> 

</example> 

The person was born as ―Grahame Grieve‖ and uses this name in normal use. However he has sometimes 
been called ―Junior‖ as well. 

7.7.6.8.8 Title example 

<example xsi:type="EN" use="OR C"> 

   <part type="TITLE" value="Dr"/> 

   <part type="GIV" value="John"/> 

   <part type="GIV" value="Paul"/> 

   <part type="FAM" value="Jones"/> 

   <part type="TITLE" qualifier="SFX" value="III"/> 

   <part type="DEL" value=", "/> 

   <part type="TITLE" qualifier="AC" value="PhD"/> 

</example> 

Dr John Paul Jones III, PhD. This name is given the use code ―OR‖ for Official Registry Name, but contains 
titles. For the purposes of this International Standard, titles and delimiters are not part of the official registry 
name, they can be present, and there is no assertion that they are actually registered. 

NOTE ―Dr‖ is an abbreviation, not an initial. Initials can contain more than one letter for linguistic reasons, but they 
are not the same as an abbreviation. Titles are often abbreviated. 

7.7.6.8.9 Complex examples  

<example xsi:type="EN" use="OR C"> 

   <part type="GIV" value="Mary Jane"/> 

   <part type="FAM" value="Contrata"/> 

</example> 

Mary Jane are two specifically space separated and ordered portions of the first name, rather than "Jane" 
being a middle name. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 71 
 

NOTE Generating initials algorithmically from this name, they would usually be MC not MJC. 

<example xsi:type="EN" use="OR C"> 

   <part type="GIV" value="Karen"/> 

   <part type="FAM" value="Van"/> 

   <part type="FAM" value="Hentenryck"/> 

</example> 

Karen Van Hentenryck is of Dutch origin, and the "Van"‘ is a voorvoegsel. 

<example xsi:type="EN" use="OR C"> 

   <part type="GIV" value="Selby"/> 

   <part type="FAM" qualifier="SP" value="Butt"/> 

   <part type="FAM" value="Beeler"/> 

</example> 

<example xsi:type="EN" use="OR OLD"> 

   <part type="GIV" value="Mary"/> 

   <part type="FAM" qualifier="CL" value="Selby"/> 

   <part type="FAM" value="Butt"/> 

</example> 

Born Mary "Selby" Butt, but changed her name to Selby Butt Beeler upon marriage, and this is the name on 
her passport. 

 

<example xsi:type="EN" use="OR A OLD"> 

   <part type="GIV" value="Jacqueline "/> 

   <part type="GIV" value="Janette"/> 

   <part type="GIV" value="Patricia"/> 

   <part type="FAM" value="Campbell"/> 

</example> 

<example xsi:type="EN" use="P OLD"> 

   <part type="GIV" value="Ruth"/> 

   <part type="FAM" value="Brinkman"/> 

</example> 

<example xsi:type="EN" use="P OLD"> 

   <part type="GIV" value="Ruth"/> 

   <part type="FAM" qualifier="SP" value="Grieve "/> 

</example> 

<example xsi:type="EN" use="OR"> 

   <part type="GIV" value="Jacqueline"/> 

   <part type="GIV" value="Janette"/> 

   <part type="GIV" value="Patricia"/> 

   <part type="FAM" value="Grieve"/> 

</example> 

<example xsi:type="EN" use="C"> 

   <part type="GIV" value="Jacque"/> 

   <part type="FAM" value="Grieve"/> 

</example> 

<example xsi:type="EN" use="C OLD"> 

   <part type="GIV" value="Jacque Ruth"/> 

   <part type="FAM" value="Grieve"/> 

</example> 

<example xsi:type="EN" use="M"> 

   <part type="FAM" value="Brinkman "/> 

</example> 

This is a particularly complex example, but anonymized from a real person. She was born as ―Jacqueline 
Janette Patricia Campbell‖, but grew up under the foster name ―Ruth Brinkman‖. Upon marriage, she was 
known as ―Ruth Grieve‖ but her legal name was ―Jacqueline Janette Patricia Grieve‖. Later, changed her 
name to ―Jacque-Ruth‖ and then just ―Jacque‖. Out of all this, she reports her maiden name as ―Brinkman‖. 

<example xsi:type="EN" use="OR OLD"> 

   <part type="GIV" qualifier="BR" value="Del-Roy"/> 

   <part type="FAM" qualifier="BR" value="Burgess"/> 

</example> 



ISO/FDIS 21090:2009(E) 

72 © ISO 2009 – All rights reserved 

 

<example xsi:type="EN" use="P"> 

   <part type="GIV" value="Yor-Led"/> 

   <part type="FAM" value="Ssegrub"/> 

</example> 

<example xsi:type="EN" use="OR ABC OLD"> 

   <part type="GIV" qualifier="AD PFX" value="Abdul"/> 

   <part type="DEL" value="-"/> 

   <part type="GIV" qualifier="AD SFX" value="Malik"/> 

   <part type="FAM" qualifier="AD" value="Shakir"/> 

</example> 

<example xsi:type="EN" use="OR ABC C"> 

   <part type="GIV" qualifier="AD" value="AbdulMalik"/> 

   <part type="FAM" qualifier="AD" value="Shakir"/> 

   <part type="TITLE" value="Sr"/> 

</example> 

<example xsi:type="EN" use="P DN"> 

   <part type="GIV" qualifier="AD" value="Abdul"/> 

</example> 

<example xsi:type="EN" use="P"> 

   <part value="AMS"/> 

</example> 

Another complicated example taken from a real person, who says ―I was born Del-Roy Burgess, and my 
nickname was Yor-Led Ssegrub. I changed my name to Abdul-Malik Shakir when adopting Islam as my 
religion. The spelling is a phonetic spelling of an Arabic name using the Latin alphabet. If Abdul-Malik is a bit 
of a mouthful, do not call me Abdul, please call me AMS instead. I recently began spelling my first name in 
camel case and dropped the ―-― delimiter (i.e., AbdulMalik not Abdul-Malik). I also recently started using the 
suffix Sr. to differentiate my identify from my son‘s with the same name. The suffix is not commonly used 
except on a few official registries such as passport, driving license and other areas where identity 
disambiguation is important. 

7.7.7 EN.TN (trivial name) 

7.7.7.1 Description 

A flavour that constrains EN. 

A restriction of EN that is effectively a simple string used for a simple name for things and places. Trivial 
names are typically used for places and things, such as Lake Erie or Washington-Reagan National Airport. 

7.7.7.2 Invariants 

 if the EN.TN is not null, there can only be one part, and it can have no type or qualifier. 

OCL for Invariants: 

  inv "only one part with no type": isNotNull implies  

        (part->size = 1 and part->first.type.oclIsUndefined and  

           part->first.qualifier->isEmpty) 

7.7.8 EN.PN (person name) 

7.7.8.1 Description 

A flavour that constrains EN. 

A restriction of EN used when the named entity is a person. A sequence of name parts, such as given name 
or family name, prefix, suffix, etc. 

A name part is a restriction on entity name part that only allows those entity name parts qualifiers applicable to 
person names. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 73 
 

NOTE Since the structure of entity name is mostly determined by the requirements of person name, the restriction is 

very minor. 

7.7.8.2 Invariants 

 none of the parts of a persons name can be qualified by the status LS. 

OCL for Invariants: 

 inv "no parts are qualified by LS": part->forAll(p | not 

        p.qualifier->includes(EntityNamePartQualifier.LS)) 

7.7.9 EN.ON (Organization Name) 

7.7.9.1 Description 

A flavour that constrains EN. 

7.7.9.2 Invariants 

 none of the parts of a organization name can be FAM or GIV; 

 the following qualifiers shall not be used in the name of an organization: I, P, ANON, A, R, DN and M. 

OCL for Invariants: 

  inv "no parts are person types": part->forAll(p | 

      not (p.type = EntityNamePartType.FAM or 

           p.type = EntityNamePartType.GIV)) 

  inv "no use codes are person codes": 

    use->forAll(u | not  

     (u = EntityNameUse.I  

      or u = EntityNameUse.P  

      or u = EntityNameUse.ANON 

      or u = EntityNameUse.A 

      or u = EntityNameUse.R 

      or u = EntityNameUse.M)).M)) 

7.8 Quantity datatypes 

7.8.1 Overview 

These datatypes provide support for quantitative values. See Figure 7. 



ISO/FDIS 21090:2009(E) 

74 © ISO 2009 – All rights reserved 

 

 

Figure 7 — Quantity datatypes 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 75 
 

 

Figure 7 (continued) 



ISO/FDIS 21090:2009(E) 

76 © ISO 2009 – All rights reserved 

 

 

Figure 7 (continued) 

7.8.2 QTY (quantity) 

7.8.2.1 Description 

Specializes ANY. 

The quantity datatype is an abstract generalization for all datatypes whose domain values have an order 
relation (less-or-equal) and where difference is defined in all of the datatype‘s totally ordered value subsets. 

The quantity type abstraction is needed in defining certain other types, such as the interval and probability 
distributions. 

7.8.2.2 ISO/IEC 11404 syntax 

 type QTY = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 77 
 

   flavorId : Set(characterstring), 

   expression : ED, 

   originalText : ED.TEXT, 

   uncertainty : QTY, 

   uncertaintyType : UncertaintyType 

   uncertainRange : IVL(QTY) 

 ) 

QTY defines three facilities that all quantities may carry: an expression that may be used to derive the actual 
value, an originalText that carries the original form in which the quantity was represented and the uncertainty 
associated with the value. There are two different ways to represent the uncertainty: one is a statistical form – 
usually suited for measured values, and a range form, which is usually associated with instructions (i.e. take 
4-6 tablets). 

The presence of these attributes may considerably complicate proper understanding of the value. For this 
reason, their use should be strictly controlled in all contexts of use. Conformance statements shall make clear 
exactly how and when these attributes are used if quantities are used by the associated Information 
processing entities. 

7.8.2.3 Attributes 

7.8.2.3.1 expression : ED: An expression that can be used to derive the actual value of the quantitive 
given information taken from the context of use. 

For example expression can be used for expressing dosage instructions that depend on patient's body weight. 

If no proper value is provided for the QTY, then the value shall have a nullFlavor, whether or not an 
expression is provided. If no proper value is provided, and an expression is provided, the appropriate 
nullFlavor is usually DER. No nullFlavor is required if both a proper value and an expression is provided; in 
such cases, it is up to the processing to determine when the expression should be evaluated. 

The language of the expression is inferred from the mediatype. If multiple translations are provided in the 
expression, the evaluator is free to choose whichever language is preferred; all translations shall specify the 
same outcome. 

The language defines the forms that the expression property can take, how the information available in the 
context of the expression is made available within the features of the language, and how the language 
declares the new form of the value. Languages may only be used if this information has been appropriately 
defined for the context in which the QTY is used. 

Information processing entities are not required to implement any languages in order to claim direct or indirect 
conformance to this International Standard, but should declare what languages are supported in their 
conformance statements. 

Language Mediatype 

OCL text/plain ocl 

Factor application/hl7-factor xml 

MathML application/mathml xml 

NOTE Factor is an HL7 specific language documented in the 

Abstract Data Types Specification. 

 



ISO/FDIS 21090:2009(E) 

78 © ISO 2009 – All rights reserved 

 

7.8.2.3.2 originalText : ED.TEXT: The text representation from which the QTY was encoded, if such a 
representation is the source of the QTY. 

Original text can be used in a structured user interface to capture what the user saw as a representation of the 
quantity on the data input screen, or in a situation where the user dictates or directly enters text, it is the text 
entered or uttered by the user. 

It is valid to use a QTY derived datatype to store only the text that the user entered or uttered. In this situation, 
original text will exist without a valid value. In a situation where the value is determined sometime after the text 
was entered, originalText is the text or phrase used as the basis for determining the value. The originalText is 
not a substitute for a valid value. If the actual value of the QTY is not valid, then the QTY shall be nullFlavored, 
irrespective of whether originalText has a value or not. 

The original text shall be an excerpt of the relevant information in the original sources, rather than a pointer or 
exact reproduction. Thus the original text shall be represented in plain text form. In specific circumstances, 
when clearly descirbed in the context of use, the originalText may be a reference to some other text artefact 
for which the resolution scope is clearly described. 

NOTE The details of the link in the originalText.reference between different artifacts of medical information (e.g., 

document and coded result) is outside the scope of this International Standard and may be further proscribed in 
specifications that use this International Standard. 

7.8.2.3.3 uncertainty : QTY: The uncertainty of the quantity using a distribution function and its 
parameters. It is the primary measure of variance/uncertainty of the value (the square root of the sum of the 
squares of the differences between all data points and the mean). The actual type of uncertainty depends on 
the type of the QTY and is fixed for each type. 

There are two different kinds of uncertainty representation. This kind of uncertainty, along with 
uncertaintyType, represents statistical uncertainty. uncertainRange specifies a different kind of uncertainty 
with no implied statistical distribution. 

This form of uncertainty shall only be applied to value domains that have a continuous distribution (REAL, PQ, 
MO and TS). Uncertainty may be applied separately to the numerator and denominator of an RTO. 

Uncertainty shall not have an expression. Uncertainty shall not have uncertainty of its own. Uncertainty shall 
not have originalText – any uncertainty associated with the QTY should be conveyed as part of the 
originalText of the QTY itself. 

Uncertainty does not have its own originalText because it is expected that the uncertainty of the quantity 
should be expressed in the originalText of the quantity itself. 

7.8.2.3.4 uncertaintyType : UncertaintyType: A code specifying the type of probability distribution in 
uncertainty. 

There are two different kinds of uncertainty representation. This kind of uncertainty, along with uncertainty, 
represents statistical uncertainty. uncertainRange specifies a different kind of uncertainty with no implied 
statistical distribution. 

The null value (unknown) for the type code indicates that the probability distribution type is unknown. In that 
case, uncertainty has the meaning of an informal guess if it is populated. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 79 
 

If populated, the value of this attribute shall be taken from the HL7 DistributionType code system. The current 
values are: 

UncertaintyType Enumeration. OID: 2.16.840.1.113883.5.1020 

1 U Uniform 

The uniform distribution assigns a constant probability over the entire 
interval of possible outcomes, while all outcomes outside this interval are 

assumed to have zero probability. The width of this interval is 2 σ 3. 
Thus, the uniform distribution assigns the probability densities 

f(x) = (2 σ √3) 1 to values μ  σ √3 W x u μ  σ √3 and f(x) = 0 otherwise. 

1 N 
Normal 
(gaussian) 

This is the well-known bell-shaped normal distribution. Because of the 
central limit theorem, the normal distribution is the distribution of choice 
for an unbounded random variable that is an outcome of a combination of 
many stochastic processes. Even for values bounded on a single side 
(i.e. greater than 0) the normal distribution may be accurate enough if the 
mean is "far away" from the bound of the scale measured in terms of 
standard deviations. 

1 LN Log-normal 

The logarithmic normal distribution is used to transform skewed random 
variable X into a normally distributed random variable U = log X. The log-
normal distribution can be specified with the properties mean μ and 
standard deviation σ. However, mean µ and standard deviation σ are the 
parameters of the raw value distribution, not the transformed parameters 
of the log-normal distribution that are conventionally referred to by the 
same letters. Those log-normal parameters μlog and σlog relate to the 

mean μ and standard deviation σ of the data value through 

log
2 = log (σ2/μ2  1) and μlog = log μ  σlog2/2. 

1 G ? (Gamma) 

The gamma-distribution used for data that is skewed and bounded to the 
right, i.e. where the maximum of the distribution curve is located near the 
origin. The γ-distribution has two parameters α and β. The relationship to 

mean μ and variance σ2 is μ = α β and σ2 = α β2. 

1 E Exponential 

Used for data that describes extinction. The exponential distribution is a 
special form of γ-distribution where α = 1, hence, the relationship to mean 

μ and variance σ2 are μ = β and σ2 = β2. 

1 X2 ? 

Used to describe the sum of squares of random variables that occurs 
when a variance is estimated (rather than presumed) from the sample. 

The only parameter of the χ2-distribution is υ, the so called the number of 
degrees of freedom (which is the number of independent parts in the 

sum). The χ2-distribution is a special type of γ-distribution with parameter 

α = υ/2 and β = 2. Hence, μ = υ and σ2 = 2 υ. 

1 T t (Student) 

Used to describe the quotient of a normal random variable and the square 

root of an χ2 random variable. The t-distribution has one parameter υ, the 
number of degrees of freedom. The relationship to mean μ and variance 

σ2 are: μ = 0 and σ2 = υ/(υ  2). 

1 F f 

Used to describe the quotient of two χ2 random variables. The F-

distribution has two parameters υ1 and υ2, which are the numbers of 

degrees of freedom of the numerator and denominator variable 

respectively. The relationship to mean μ and variance σ2 are: 

μ = υ2/(υ2  2) and σ2 = (2 υ2
2
 (υ2  υ1  2))/[υ1 (υ2  2)2 (υ2  4)]. 

1 B ? (Beta) 

The beta-distribution is used for data that are bounded on both sides and 
may or may not be skewed (e.g., occurs when probabilities are 
estimated.) Two parameters α and β are available to adjust the curve. The 

mean μ and variance σ2 relate as follows: μ = α/(α  β) and 

(σ2 = α β/[(α  β)2 (α  β  1)]. 



ISO/FDIS 21090:2009(E) 

80 © ISO 2009 – All rights reserved 

 

Many distribution types are defined in terms of special parameters (e.g., the parameters α and β for the γ-
distribution, number of degrees of freedom for the t-distribution, etc.). For all distribution types, however, the 
mean and standard deviation are defined. 

If no value (null) is provided for distributionType, then the mean is estimated without any closer consideration 
of its probability distribution. In this case, the meaning of the standard deviation is not crisply defined. 
However, interpretation should be along the lines of the normal distribution, e.g., the interval covered by the 

mean 1 standard deviation should be at the level of about two thirds confidence. 

The three distribution-types unknown (null), uniform and normal shall be supported by every system that 
claims to support uncertainty. All other distribution types are optional. When a system interpreting a 
uncertainty representation encounters a distribution type that it does not recognise, it maps this type to the 
unknown (null) distribution-type. 

11404 syntax for the distributionType attribute 

 type UncertaintyType = enumeration (U, N, LN, G, E, X2, T, F, B) 

 

7.8.2.3.5 uncertainRange : IVL(QTY): C:\Workspace\org.hl7.v3\dt\abstract\datatypes.html - dt-CE 
Indicates that the value comes from a range of possible values. 

uncertainRange is used where the actual value is unknown, but it is known that the value comes from a known 
range of possible values. uncertainRange differs from uncertainty in that uncertainty is used to report a 
particular value along with an associated distribution of uncertainty for the value, or to report the summary 
distribution of a set of data, whereas uncertainRange indicates that there is a single value that, although 
unknown, comes from a particular range of values. No inference regarding distribution of values can be taken. 
uncertainRange is often associated with an instruction to perform a particular operation at some point within a 
given time interval. 

If an uncertainRange is provided, a low or high shall be provided. The IVL any and width attributes cannot be 
used. If an uncertainRange is provided, no value can be provided. 

7.8.2.4 Equality 

Equality is not defined for the QTY datatype as it is an abstract type.The QTY attributes (expression, 
originalText, uncertainty and uncertaintyType) never participate in the determination of equality of 
specializations of QTY. 

7.8.2.5 Invariants 

 uncertainty has no expression, uncertainty or originalText; 

 uncertainRange has no expression, uncertainty or originalText; 

 cannot have both uncertainty and uncertainRange; 

 cannot have width or any on uncertainRange. 

OCL for Invariants: 

    def: let noSemantics : Boolean = expression.oclIsUndefined and  

       originalText.oclIsUndefined and uncertainty.oclIsUndefined and  

       uncertaintyType.oclIsUndefined 

   

    inv "uncertainty rules": uncertainty.isNotNull implies  

       (uncertainty.noSemantics) 

    inv "uncertainRange rules": uncertainRange.isNotNull implies  

       (uncertainRange.noSemantics) 

../../../../Workspace/org.hl7.v3/dt/abstract/datatypes.html#dt-CE


ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 81 
 

    inv "uncertainty kind": not (uncertainty.isNotNull and  

       uncertainRange.isNotNull) 

  inv "uncertainRange Type": uncertainRange.oclIsDefined implies  

      ((uncertainRange.width.oclIsUndefined and          

        uncertainRange.any.oclIsUndefined) 

      and (uncertainRange.low.isNotNull or 

         uncertainRange.high.isNotNull))   

   

  inv "No History or Update Mode": noUpdateOrHistory(uncertainty) and 

           noUpdateOrHistory(uncertainRange) and 

           noUpdateOrHistory(originalText) and 

           noUpdateOrHistory(expression)) 

7.8.2.6 Operations 

7.8.2.6.1 lessthan[<](other : QTY):BL: True if the value of this is less than the value of other. For 
uncertain values, this may not be known (result = NullFlavor.UNK). 

7.8.2.6.2 lessOrEqual[<=](other : QTY):BL: True if the value of this is less than or equal to the value of 
other. For uncertain values, this may not be known (result = NullFlavor.UNK). 

7.8.2.6.3 greaterOrEqual[>=](other : QTY):BL: True if the value of this is greater than or equal to the 
value of other. For uncertain values, this may not be known (result = NullFlavor.UNK). 

7.8.2.6.4 greaterThan[>](other : QTY):BL: True if the value of this is greater than the value of other. For 
uncertain values, this may not be known (result = NullFlavor.UNK). 

7.8.2.6.5 plus[+](other : QTY):QTY: The result of addition of this and other. Other must be of the right type 
of value (same type as this, except for TS, where the value must be a PQ with units of time, or for PQ, where 
the value of other must have compatible units), else the result is nullFlavor NI. Uncertainties should be carried 
through the operation. If the values have mixed uncertainties, the result may be unknown (result = 
NullFlavor.UNK). 

7.8.2.6.6 minus[-](other : QTY):QTY: The result of subtraction of other from this. Other must be of the 
type of value (same type as this, except for TS, where the value must be a TS or a PQ with units of time, or for 
PQ, where the value of other must have compatible units), else the result is nullFlavor NI. Uncertainties should 
be carried through the operation. If the values have mixed uncertainties, the result may be unknown (result = 
NullFlavor.UNK). 

7.8.2.6.7 comparable(other : QTY) : Boolean: whether this and other can be compared using equality. 

NOTE Generally this is true if both this and other are the same type unless noted otherwise for specializations for 

QTY. 

7.8.2.6.8 isDifference(other : QTY):BL True if other is an instance that expresses the difference between 
two instances of this type. 

NOTE Usually this is true if other is the same as the type, except for TS, where the difference is expressed as a PQ 
with a unit that is a kind of time, and for PQ, where the units must be compatible. 

7.8.3 INT (integer) 

7.8.3.1 Description 

Specializes QTY. 



ISO/FDIS 21090:2009(E) 

82 © ISO 2009 – All rights reserved 

 

Integer numbers ( 1,0,1,2, 100, 3398129, etc.) are precise numbers that are results of counting and 
enumerating. Integer numbers are discrete, the set of integers is infinite but countable. No arbitrary limit is 
imposed on the range of integer numbers. 

7.8.3.2 ISO/IEC 11404 syntax 

 type INT = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   expression : ED, 

   originalText : ED.TEXT, 

   uncertainty : QTY, 

   uncertaintyType : UncertaintyType, 

   uncertainRange : IVL(QTY) 

   value : integer 

 ) 

7.8.3.3 Attributes 

value : Integer: The value of the INT. Note that this International Standard imposes no limitations on the size 
of integer, but most implementations will map this to a 32 or 64 bit integer. 

This is an example of the primitive type wrapping pattern. See 6.3 for more details. 

7.8.3.4 Equality 

Two nonNull INT are equal if they are not nullFlavored and have the same value, or their uncertainRanges not 
null or nullFlavored and equal. 

7.8.3.5 Invariants 

 a value or an uncertain range must be provided if not nullFlavored; 

 cannot provide both a value and an uncertain range; 

 uncertainRange shall be an IVL(INT); 

 uncertainty shall not be populated. 

OCL for Invariants: 

     inv “no uncertainty”: uncertainty.isNull 

     inv "uncertain types": uncertainRange.low.oclIsDefined  

         implies uncertainRange.low.oclIsKindOf(INT) and 

         uncertainRange.high.oclIsDefined implies  

         uncertainRange.high.oclIsKindOf(INT)  

     inv "value xor uncertainRange": not (value.oclIsDefined and  

         uncertainRange.isNotNull) 

     inv "null or value": isNull xor (value.oclIsDefined or  

         uncertainRange.isNotNull) 

     inv "null or value": isNull xor value.oclIsDefined 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 83 
 

7.8.3.6 Operations 

7.8.3.6.1 negated[ ] : INT: The negative value of this. 

7.8.3.6.2 plus[ ] (other : INT) : INT: the value of the addition of this and other. 

7.8.3.6.3 minus[ ] (other : INT) : INT: The value of the subtraction of other from this. 

7.8.3.6.4 times[*] (other : INT) : INT: The value of the multiplication of this and other. 

7.8.3.6.5 dividedBy[/] (other : INT) : REAL: The value of this divided by other. If other is 0, then the result 
is nullFlavor NI. 

7.8.3.6.6 dividedBy[/] (other : REAL) : REAL: The value of this divided by other. If other is 0, then the 
result is nullFlavor NI. 

7.8.3.6.7 abs() : INT: The absolute value of this. 

7.8.3.6.8 div( other : INT) : INT: The number of times that other fits completely within this. 

7.8.3.6.9 mod( other : INT) : INT: The result is this modulo other. 

7.8.3.6.10 max(other : INT) : INT: The maximum of this and other. 

7.8.3.6.11 min(other : INT) : INT: The minimum of this and other. 

7.8.3.6.12 comparable(other : QTY):BL: Integer values may always be compared. 

7.8.3.7 Examples 

7.8.3.7.1 Plain value 

<example xsi:type="INT" value="23"/> 

The integer 23. 

7.8.3.7.2 Unknown value  

<example xsi:type="INT" nullFlavor="NASK"/> 

The patient was not asked for this value. For instance, the patient has never been pregnant, so that patient 
was not asked how many children she has.  

7.8.4 INT.NONNEG 

7.8.4.1 Description 

A flavour that constrains INT. 

NT.NONNEG constrains INT so that it has a value of 0 or greater. 

7.8.4.2 Invariants 

 the value must be zero or greater if not nullFlavored, with no uncertainty. 



ISO/FDIS 21090:2009(E) 

84 © ISO 2009 – All rights reserved 

 

OCL for Invariants: 

  inv "not negative": isNotNull implies value >= 0 

7.8.5 INT.POS 

7.8.5.1 Description 

A flavour that constrains INT.NONNEG. 

INT.POS constrains INT.NONNEG so that it has a value greater than 0. 

7.8.5.2 Invariants 

 the value must be greater than zero if not nullFlavored, with no uncertainty. 

OCL for Invariants: 

  inv "positive": isNotNull implies value > 0 

7.8.6 CO (coded ordinal) 

7.8.6.1 Description 

Specializes QTY. 

Represents data where coded values are associated with a specific order. 

CO may be used for things that model rankings and scores, e.g. likert scales, pain, Apgar values, etc, where 
there is a) implied ordering, b) no implication that the distance between each value is constant, and c) the total 
number of values is finite. CO may also be used in the context of an ordered code system. In this case, it may 
not be appropriate or even possible to use the value attribute, but CO may still be used so that models that 
make use of such code systems may introduce model elements that involve statements about the order of the 
terms in a domain. 

The relative order of values in a code system need not be independently obvious in the literal representation 
of the CO. It these circumstances, is expected that an application will look up the ordering of these values 
from some definition of the code system. 

Some of the code systems will directly assign numerical value to the concepts that are suitable for some 
mathemetical operations. 

Though it would generally make sense, applications should not assume that the translations of the code, if 
provided, will have the same ordering as the CO. Translations shall not be considered when the ordering of 
the code system is determined. 

7.8.6.2 ISO/IEC 11404 syntax 

 type CO = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   expression : ED, 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 85 
 

   originalText : ED.TEXT, 

   uncertainty : QTY, 

   uncertaintyType : UncertaintyType, 

   uncertainRange : IVL(QTY) 

   value : Decimal, 

   code : CD 

 ) 

7.8.6.3 Attributes 

7.8.6.3.1 value : Decimal: A numerical value associated with the coded ordinal value. 

The value may be constrained to an integer in some contexts of use. If code is nonNull, value shall only be 
nonNull if the code system explicitly assigns a value to the concept. 

7.8.6.3.2 code : CD: A code representing the definition of the ordinal item. 

7.8.6.4 Equality 

Two nonNull CO values are equal if their codes are equal. 

NOTE 1 CO values that have value alone with no code are never equal, as it is not clear whether they are comparable 

ordinals. 

NOTE 2 Since the determination of CO equality is based upon the code, CO values can be equal to CD values. 

7.8.6.5 Invariants 

 there must be a code or a value if not nullFlavored; 

 no uncertainty. 

OCL for invariants: 

  inv "must have a code or a value": isNotNull implies 

(code.isNotNull or value.oclIsDefined) 

        inv "uncertainty Type": uncertainty.oclIsUndefined and  

              uncertainRange.oclIsUndefined 

  inv "No History or Update Mode":noUpdateOrHistory(code) 

  

 

7.8.6.6 Operations 

7.8.6.6.1 max(other : CO) : CO: The maximum of this and other. 

NOTE If the value attribute is not specified, the applicable terminology might need to be consulted to determine the 
order of the two values. If no order is defined, the result will be nullFlavor NI. 

7.8.6.6.2 min(other : CO) : CO: The minimum of this and other. 

NOTE If the value attribute is not specified, the applicable terminology might need to be consulted to determine the 
order of the two values. If no order is defined, the result will be nullFlavor NI. 



ISO/FDIS 21090:2009(E) 

86 © ISO 2009 – All rights reserved 

 

7.8.6.6.3 comparable(other : QTY):BL: This is false unless this and other have the same codeSystem, 
and then only if the codeSystem defines an order amongst the codes. 

7.8.6.6.4 plus[+](other : QTY):QTY: This operation returns null unless this.comparable(other) is true, and 
the codeSystem defines the meaning of addition for these codes. 

7.8.6.6.5 minus[-](other : QTY):QTY: This operation returns null unless this.comparable(other) is true, and 
the codeSystem defines the meaning of subtraction  for these codes. 

7.8.6.7 Examples 

<example xsi:type="CO" value="1"> 

  <code code="1" codeSystem="2.16.840.1.113883.2.6.15.1.1"> 

    <displayName value="Poor"/> 

  </code> 

</example> 

In this case, the value "poor― is assigned a numerical value of 1. 

7.8.7 REAL (real) 

7.8.7.1 Description 

Specializes QTY. 

Fractional numbers. Typically used whenever quantities are measured, estimated or computed from other real 
numbers. The typical representation is decimal, where the number of significant decimal digits is known as the 
precision. 

7.8.7.2 ISO/IEC 11404 syntax 

 type REAL = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   expression : ED, 

   originalText : ED.TEXT, 

   uncertainty : QTY, 

   uncertaintyType : UncertaintyType, 

   uncertainRange : IVL(QTY) 

   value : Decimal  

) 

7.8.7.3 Attributes 

7.8.7.4 value : Decimal: The value of the REAL. 

This is an example of the primitive type wrapping pattern. See 6.3 for more details. 

7.8.7.5 Equality 

Two nonNull REAL are equal if they are not nullFlavored and have the same value, or if their uncertainRanges 
are not null and not nullFlavored and equal. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 87 
 

7.8.7.6 Invariants 

 a value or an uncertain range must be provided if not nullFlavored; 

 cannot provide both a value and an uncertain range; 

 uncertainty types must be a REAL. 

OCL for Invariants: 

  inv "value xor uncertainRange": not  

     (value.oclIsDefined and uncertainRange.isNotNull) 

  inv "null or value": isNull xor (value.oclIsDefined or  

      uncertainRange.isNotNull) 

  inv "uncertain types": uncertainRange.low.oclIsDefined  

      implies uncertainRange.low.oclIsKindOf("REAL") and 

      uncertainRange.high.oclIsDefined implies  

      uncertainRange.high.oclIsKindOf("REAL") and 

      uncertainty.oclIsDefined implies 

      uncertainty.oclIsKindOf("REAL")  

7.8.7.7 Operations 

7.8.7.7.1 plus[ ] (other : REAL) : REAL: The value of the addition of this and other. 

7.8.7.7.2 minus[ ] (other : REAL) : REAL: The value of the subtraction of other from this. 

7.8.7.7.3 times[*] (other : REAL) : REAL: The value of the multiplication of this and other. 

7.8.7.7.4 negated[ ] : REAL: The negative value of this. 

7.8.7.7.5 dividedBy[/] (other : REAL) : REAL: The value of this divided by other. If other is 0, then the 
result is nullFlavor NI. 

7.8.7.7.6 abs() : REAL: The absolute value of this. 

7.8.7.7.7 floor() : INT: The largest integer which is less than or equal to this. 

7.8.7.7.8 ceiling() : INT: The smallest integer which is greater than or equal to this. 

7.8.7.7.9 round() : INT: The integer which is closest to this. When there are two such integers, the largest 
one. 

7.8.7.7.10 inverted() : REAL: The value of 1 divided by self.. 

7.8.7.7.11 max(other : REAL) : REAL: The maximum of this and other. 

7.8.7.7.12 min(other : REAL) : REAL: The minimum of this and other. 

7.8.7.7.13 power(other : REAL) : REAL : this raised to the power of other. 

7.8.7.7.14 toInterval() : IVL(REAL) : Converts this value to an interval that expresses the range covered 
by the precision. 

7.8.7.7.15 comparable(other : QTY):BL: Real numbers may always be compared. 



ISO/FDIS 21090:2009(E) 

88 © ISO 2009 – All rights reserved 

 

7.8.7.8 Examples 

7.8.7.8.1 Precision 

<example xsi:type="REAL" value="23.0005"/> 

The floating value 23.0005.  

<example xsi:type="REAL" value="23.00"/> 

The floating value 23.00.  

7.8.7.8.2 Uncertainty  

<example xsi:type="REAL" value="23" uncertaintyType="N"> 

  <uncertainty xsi:type="REAL" value="0.87"/> 

</example> 

The floating value 23. The uncertainty is known to be a normal distribution with a standard deviation of 0.87. 
Note that uncertainty will always need an xsi:type.  

 

7.8.8 RTO (ratio) 

7.8.8.1 Description 

Specializes QTY. 

A quantity constructed as the quotient of a numerator quantity divided by a denominator quantity. 

Common factors in the numerator and denominator are not automatically cancelled out. 

The RTO datatype supports titers (e.g., "1:128") and other quantities produced by laboratories that truly 
represent ratios. Ratios are not simply "structured numerics", particularly blood pressure measurements 
(e.g. "120/60") are not ratios. 

NOTE 1 Ratios are different from rational numbers, i.e., in ratios common factors in the numerator and denominator 

never cancel out. A ratio of two real or integer numbers is not automatically reduced to a real number. This datatype is not 
defined to generally represent rational numbers. It is used only if common factors in numerator and denominator are not 

supposed to cancel out. This is only rarely the case. For observation values, ratios occur almost exclusively with titers. In 
most other cases, REAL should be used instead of the RTO. 

NOTE 2 Since many implementation technologies expect generics to be collections, or only have one parameter, RTO 
is not implemented as a generic in this International Standard. Constraints, at the point where the RTO is used, will define 

which form of QTY is used. 

7.8.8.2 ISO/IEC 11404 syntax 

 type RTO = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   expression : ED, 

   originalText : ED.TEXT, 

   uncertainty : QTY, 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 89 
 

   uncertaintyType : UncertaintyType, 

   uncertainRange : IVL(QTY) 

   numerator : QTY, 

   denominator : QTY 

 ) 

7.8.8.3 Attributes 

7.8.8.3.1 numerator : QTY: The quantity that is being divided in the ratio. 

7.8.8.3.2 denominator : QTY: The quantity that divides the numerator in the ratio. 

The denominator shall not be zero. 

7.8.8.3.3 Equality 

Two nonNull RTOs are equal if their numerator and denominator are equal. 

7.8.8.4 Invariants 

 if the RTO is not nullFlavored, both a numerator and a denominator are required; 

 uncertainty SHALL not be populated; 

 neither numerator nor denominator may be of type TS. 

OCL for Invariants: 

  inv "numerator and denominator required": isNull xor 

(numerator.isNotNull and denominator.isNotNull) 

  inv "no updateMode or History on RTO Attributes": 

 noUpdateOrHistory(numerator) and 

  noUpdateOrHistory(denominator) 

     inv "no uncertainty": uncertainty.oclIsUndefined and  

           uncertainRange.oclIsUndefined  

     inv "no TS": (numerator.isNotNull implies not  

          numerator.oclIsKindOf("TS")) and (denominator.isNotNull  

          implies not denominator.oclIsKindOf("TS")) 

7.8.8.5 Operations 

7.8.8.5.1 comparable(other : QTY):BL: This and other can be be compared if both the numerator and 
denominator can be compared. 

7.8.8.6 Examples 

<example xsi:type="RTO"> 

 <numerator xsi:type="MO" value="103.00" currency="USD"/> 

 <denominator xsi:type="PQ" value="1" unit="day"/> 

</example> 

US$103/day. 

The inner xsi:type declarations are always required. 



ISO/FDIS 21090:2009(E) 

90 © ISO 2009 – All rights reserved 

 

7.8.9 PQ (physical quantity) 

7.8.9.1 Description 

Specializes QTY. 

A dimensioned quantity expressing the result of measuring. 

7.8.9.2 ISO/IEC 11404 syntax 

 type PQ = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   expression : ED, 

   originalText : ED.TEXT, 

   uncertainty : QTY, 

   uncertaintyType : UncertaintyType, 

   uncertainRange : IVL(QTY) 

   value : Decimal, 

   codingRationale : CodingRationale, 

   unit : characterstring, 

   translation : Set(PQR) 

 ) 

 

7.8.9.3 Attributes 

7.8.9.3.1 value : Decimal: the number which is multiplied by the unit to make the PQ or PQR value if not 
nullFlavored. 

7.8.9.3.2 unit : Code: The unit of measure specified in the Unified Code for Units of Measure (UCUM). 

UCUM defines two forms of expression, case sensitive and case insensitive. PQ uses the case sensitive 
codes. The codeSystem OID for the case sensitive form is 2.16.840.1.113883.6.8. The default value for unit is 
the UCUM code ―1‖ (unity). 

Equality of physical quantities does not require the values and units to be equal independently. Value and unit 
is only how we represent physical quantities. For example, 1 m equals 100 cm. Although the units are different 
and the values are different, the physical quantities are equal. Therefore one should never expect a particular 
unit for a physical quantity but instead allow for automated conversion between different comparable units. 

The unit shall come from UCUM, which only specifies unambiguous measurement units. Sometimes it is not 
clear how some measurements in healthcare map to UCUM codes. 

The general pattern for a measurement is value unit of Thing. In this scheme, the PQ represents the  value 
and the unit, and the Thing is described by some coded concept that is linked to the PQ by the context of use. 
This maps obviously to some measurements, such as Patient Body Temperature of 37 Celsius, and 250 
mg/day of Salicylate. 

However for some measurements that arise in healthcare, the scheme is not so obvious. Two classic 
examples are 5 Drinks of Beer, and 3 Acetominophen tablets. At first glance it is tempting to classify these 
measurments like this: 5 drinks of Beer and 3 Acetominophen tablets. The problem with this is that UCUM 
does not support units of "beer", "tablets" or "scoops". 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 91 
 

The reason for this is that neither tablets nor scoops are proper units. What kind of tablets? How big is the 
glass? In these kinds of cases, the concept that appears to be a unit needs to further specified before 
interoperability is established. If a correct amount is required, then it is generally appropriate to specify an 
exact measurement with an appropriate UCUM unit. If this is not possible, then the concept is not part of the 
measurement. UCUM provides a unit called unity for use in these cases. The proper way to understand these 
measurements as 3 1 Acetominophen tablets, where 1 is the UCUM unit for unity, and the Thing has a 
qualifier. The context of use needs to provide the extra qualifying information. 

7.8.9.3.3 codingRationale : CodingRationale: The reason that this PQ or PQR was provided. More than 
one reason may be given. For possible values, see 7.5.2.4.10 CD.codingRationale. 

7.8.9.3.4 translation : Set(PQR): An alternative representation of the same physical quantity expressed in 
a different unit from a different unit code system and possibly with a different value. 

It is not necessary for information processing entities to check and enforce that the translations are valid 
translations of the base unit, but they are allowed to do so, and to reject instances where the translations are 
not valid. 

NOTE Translations are allowed to contain other representations in UCUM units, but there is generally no point to this 

as it is possible to convert from one UCUM form to another. 

7.8.9.4 Equality 

Two PQ values are equal if the value and units of their canonical forms are equal, or if their uncertainRanges 
are not null and not nullFlavored and equal. The attributes codingRationale, source, and any translations do 
not participate in the determination of equality. 

7.8.9.5 Invariants 

 a value or an uncertain range shall be provided if not nullFlavored; 

 cannot provide both a value and an uncertain range; 

 uncertainty types must be a PQ; 

 if uncertainties are provided, their canonical units must match. 

OCL for Invariants: 

def: let unitsMatch (other : PQ) : Boolean =  

        (canonical.unit = other.canonical.unit) 

   

inv "null or value": isNull xor (value.oclIsDefined or  

      uncertainRange.isNotNull) 

inv "value xor uncertainRange": not (value.oclIsDefined and  

      uncertainRange.isNotNull) 

inv "uncertain types": uncertainRange.low.oclIsDefined implies  

    uncertainRange.low.oclIsKindOf(PQ) and 

   uncertainRange.high.oclIsDefined implies      

    uncertainRange.high.oclIsKindOf(PQ) and 

   uncertainty.oclIsDefined implies     

    uncertainty.oclIsKindOf(PQ) 

inv "uncertainties - canonicals":  

   uncertainRange.low.oclIsDefined implies    

    unitsMatch(uncertainRange.low) and 

   uncertainRange.high.oclIsDefined implies  

    unitsMatch(uncertainRange.high) and 

   uncertainty.oclIsDefined implies unitsMatch(uncertainty) 



ISO/FDIS 21090:2009(E) 

92 © ISO 2009 – All rights reserved 

 

 

context PQ::isDifference(other : QTY): Boolean 

  post: other.oclIsKindOf(PQ) and  

    canonical.unit.equals(other.oclAsTypeOf(PQ).canonical.unit) 

7.8.9.6 Operations 

7.8.9.6.1 canonical : PQ: The value converted to the form with canonical units. UCUM provides more 
information about canonical units. 

7.8.9.6.2 comparable(other : QTY):BL: This and other can be compared if the units of the canonical forms 
are the same. 

7.8.9.6.3 inverted():PQ: The inverted value of the PQ. Both value and unit must be inverted. 

7.8.9.6.4 negated[ ] : PQ: The negative value of this. 

7.8.9.6.5 plus[ ] (other : PQ) : PQ: The value of the addition of this and other; if the units do not match, 
NullFlavor NI. 

7.8.9.6.6 minus[ ] (other : PQ) : PQ: The value of the subtraction of other from this; if the units do not 
match, NullFlavor NI. 

7.8.9.6.7 times[*] (other : PQ) : PQ: The value of the multiplication of this and other with appropriate 
changes to the units. 

7.8.9.6.8 times[*] (other : REAL) : PQ: The value of the multiplication of this and other. 

7.8.9.6.9 dividedBy[/] (other : PQ) : PQ: The value of this divided by other with appropriate changes to the 
units. If other is 0, then the result is nullFlavor NI. 

7.8.9.6.10 dividedBy[/] (other : REAL) : PQ: The value of this divided by other. If other is 0, then the result 
is nullFlavor NI. 

7.8.9.6.11 abs() : PQ: The absolute value of this. 

7.8.9.6.12 max(other : PQ) : PQ: The maximum of this and other; if the units do not match, NullFlavor NI. 

7.8.9.6.13 min(other : PQ) : PQ: The minimum of this and other; if the units do not match, NullFlavor NI. 

7.8.9.6.14 toInterval() : IVL(PQ) : Converts this value to an interval that expresses the range covered by the 
precision of the value. 

7.8.9.7 Examples 

7.8.9.7.1 Plain value 

<example xsi:type="PQ" value="1.1" unit="mg/mL"/> 

1,0 mg/mL. 

<example xsi:type="PQ" value="11" unit="mg/mL" codingRationale="R"> 

  <translation codingRationale="O" value="0.011" 

     codeSystem="2.16.840.1.113883.19.10" code="grams/litre"/> 

</example> 

11 mg/ml as a translation from the original measurement of 0.011g/L in a local code system into UCUM units. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 93 
 

7.8.9.7.2 Uncertain range 

<doseQuantity xsi:type="PQ" units="1"> 

  <uncertainRange> 

    <low xsi:type="PQ" value="1"/> 

    <high xsi:type="PQ" value="2"/> 

  </uncertainRange> 

</doseQuantity> 

This URG(PQ) specifies that patient should take 1 to 2 tablets. This might be part of a prescription 
order such as "By mouth, take 1-2 tablets every 4-6 hours when needed for severe pain to a 
maximum of 8 per day". Note that the unit is "1" – the default UCUM unit, so this matches the units 
on the low and high in the uncertainRange. 

7.8.9.7.3 Using expressions 

<substanceAdministration> 

   ... 

   <doseQuantity xsi:type="PQ" nullFlavor="DER" unit="mL"> 

     <expression mediaType="application/hl7-factor+xml"> 

       <xml> 

         <coefficient value="30" unit="mL/kg"/> 

         <factor value="bodyMass"/> 

       </xml> 

     </expression> 

   </doseQuantity> 

   ... 

   <derivedFrom> 

     <localVariableName value="bodyMass"/> 

     <monitoringObservation> 

       <code code="29463-7" codeSystem="2.16.840.1.113883.11.16492"> 

   <displayName value="BODY WEIGHT:MASS:PT:^PATIENT:QN"/> 

       </code> 

     </monitoringObservation> 

   </derivedFrom> 

 </substanceAdministration>      

This example uses an HL7 specific language to illustrate how the expression attribute is used. 

The dose quantity of the substance that is being administered depends on the patient‘s body mass, 30 mg per 
kilogram of body mass. Rather than providing an actual value for the patient‗s body mass, since it may be 
unknown or may change, the maximum dose quantity is given in terms of an expression. Since no value 
attribute is provided, a nullFlavor must be provided; DER is the appropriate choice when an expression is 
provided. 

The body mass may be found by checking for any observations matching the LOINC code 29463-7; if no 
matching observations can be found, the outcome of the expression will be null or a nullFlavor, as the value 
cannot be known. 

NOTE Factor is an HL7 specific language documented in the Abstract Data Types Specification. 

7.8.10 PQ.TIME 

7.8.10.1 Description 

A flavour that constrains PQ. 

PQ.TIME constraints PQ so that it shall have units that describe a period of time. 



ISO/FDIS 21090:2009(E) 

94 © ISO 2009 – All rights reserved 

 

7.8.10.2 Invariants 

 the units shall be a measure of time ["such as, "s" (second), "min" (minute), "h" (hour), "d" (day), 
"wk" (week), "a" (year)]. 

OCL for Invariants: 

inv "must be a unit of time": canonical.unit = "s" 

7.8.11 PQR (physical quantity representation) 

7.8.11.1 Description 

Specializes CD.CV. 

An extension of the coded value datatype representing a physical quantity using a unit from any code system. 
Used to show alternative representation for a physical quantity. The coded value represents the unit (usually 
in some other coding system than UCUM). 

7.8.11.2 ISO/IEC 11404 syntax 

 type PQR = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   code : characterstring, 

   codeSystem : characterstring, 

   codeSystemName : characterstring, 

   codeSystemVersion : characterstring, 

   valueSet : characterstring, 

   valueSetVersion : characterstring, 

   displayName : ST, 

   originalText : ED.TEXT, 

   codingRationale : CodingRationale), 

   translation : Set(CD), 

   source : CD, 

   value : Decimal 

) 

7.8.11.3 Attributes 

7.8.11.3.1 value: Decimal : The magnitude of the measurement value in terms of the unit specified by this 
code. 

7.8.11.4 Equality 

Two PQR values are equal if their value, code and codeSystem are equal. The other attributes do not 
participate in the determination of equality. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 95 
 

7.8.11.5 Invariants 

 a unit is required; 

 no source; 

 no originalText. 

NOTE There is only one originalText, that for the physical quantity itself. 

OCL for Invariants: 

  inv "null or value": isNull xor value.oclIsDefined  

  inv "no originalText": originalText.oclIsUndefined 

  inv "no updateMode or History on PQR": noUpdateOrHistory 

  inv "no translations": translation.isEmpty 

  inv "no source": source.oclIsUndefined   

7.8.12 MO (monetary amount) 

7.8.12.1 Description 

Specializes QTY. 

An MO is a quantity expressing the amount of money in some currency. 

Currencies are the units in which monetary amounts are denominated in different economic regions. While the 
monetary amount is a single kind of quantity (money) the exchange rates between the different units are 
variable. This is the principle difference between PQ and MO, and the reason why currency units are not 
physical units. 

7.8.12.2 ISO/IEC 11404 syntax 

 type MO = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   expression : ED, 

   originalText : ED.TEXT, 

   uncertainty : QTY, 

   uncertaintyType : UncertaintyType, 

   uncertainRange : IVL(QTY) 

   value : Decimal, 

   currency : characterstring 

 ) 



ISO/FDIS 21090:2009(E) 

96 © ISO 2009 – All rights reserved 

 

7.8.12.3 Attributes 

7.8.12.3.1 value : Decimal: The value of the MO. MO values are usually precise to 0.01 (one cent, penny, 
paisa, etc.) or 1 (yen, forint, etc), though other precisions exist. ISO 4217 documents the appropriate precision 
for most currencies. 

7.8.12.3.2 currency : Code: The currency unit as defined in ISO 4217. 

7.8.12.4 Equality 

Two MO values are equal if their value and currency attributes are equal, or if their uncertainRanges are not 
null and not nullFlavored and equal. 

7.8.12.5 Invariants 

 if not nullFlavored, a value or an uncertain range must be present; 

 if not nullFlavored, a currency must be defined; 

 cannot provide both a value and an uncertain range; 

 uncertainty types must be a PQ; 

 if uncertainties are provided, their canonical units must match. 

OCL for Invariants: 

def: let currencyMatches (other : MO) : Boolean =  

     currency = other.currency 

 

inv "null or currency": isNull xor currency.oclIsDefined 

inv "null or value": isNull xor (value.oclIsDefined or  

         uncertainRange.isNotNull) 

inv "value xor uncertainRange": not (value.oclIsDefined and  

         uncertainRange.isNotNull) 

inv "uncertain types": uncertainRange.low.oclIsDefined implies  

       uncertainRange.low.oclIsKindOf(MO) and 

      uncertainRange.high.oclIsDefined implies 

       uncertainRange.high.oclIsKindOf(MO) and 

      uncertainty.oclIsDefined implies  

       uncertainty.oclIsKindOf(MO) 

inv "uncertainties - currencies": 

   uncertainRange.low.oclIsDefined implies          

     currencyMatches(uncertainRange.low) and 

   uncertainRange.high.oclIsDefined implies  

     currencyMatches(uncertainRange.high) and 

   uncertainty.oclIsDefined implies     

     currencyMatches(uncertainty) 

 

context CO::isDifference(other : QTY): Boolean 

  post: other.oclIsKindOf(MO) 

 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 97 
 

7.8.12.6 Operations 

7.8.12.6.1 plus[ ] (other : MO) : MO: The value of the addition of this and other; if the currencies do not 
match, NullFlavor NI. 

7.8.12.6.2 minus[ ] (other : MO) : MO: The value of the subtraction of other from this; if the currencies do 
not match, NullFlavor NI. 

7.8.12.6.3 times[*] (other : REAL) : MO: The value of the multiplication of this by other. 

7.8.12.6.4 dividedBy[/] (other : REAL) : MO: The value of this divided by other. If other is 0, then the result 
is nullFlavor NI. 

7.8.12.6.5 max(other : MO) : MO: The maximum of this and other. 

7.8.12.6.6 min(other : MO) : MO: The minimum of this and other. 

7.8.12.6.7 comparable(other : QTY):BL: This and other can be compared if their currencies are the same. 

7.8.12.7 Examples 

<example xsi:type="MO" value="42" currency="AUD"/> 

A$42 Australian dollars. 

7.8.13 TS (point in time) 

7.8.13.1 Description 

Specializes QTY. 

A quantity specifying a point on the axis of natural time. A point in time is most often represented as a 
calendar expression. 

7.8.13.2 ISO/IEC 11404 syntax 

 type TS = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   expression : ED, 

   originalText : ED.TEXT, 

   uncertainty : QTY, 

   uncertaintyType : UncertaintyType, 

   uncertainRange : IVL(QTY) 

   value : characterstring 

 ) 



ISO/FDIS 21090:2009(E) 

98 © ISO 2009 – All rights reserved 

 

7.8.13.3 Attributes 

7.8.13.3.1 value : String: The value of the TS. value is a string with the format 
"YYYY[MM[DD[HH[MM[SS[.U[U[U[U]]]]]]]]][+|-ZZzz]" that conforms to the constrained ISO 8601 defined in ISO 
8824 (ASN.1) under clause 32 (generalized time). The format should be used to the degree of precision that is 
appropriate. 

7.8.13.4 Equality 

Two nonNull TS values are only equal if their time and precision are equal, or if their uncertainRanges are not 
null and not nullFlavored and equal. If both TS value have timezones, the values should be be corrected for 
timezone before comparison. If neither TS value has a timezone, then they may be compared for equality 
without correction. If only one TS value has a timezone, then the equality is nullFlavor NI. 

7.8.13.5 Invariants 

 if the TS is not nullFlavored, a value or an uncertain range must be present; 

 if a value is present, at least a full year must be specified; 

 uncertainty types must be a PQ with a unit of TIME; 

 cannot provide both a value and an uncertain range. 

OCL for Invariants: 

def: let hasTimezone : Boolean = value.pos("+") > 0  

    or value.pos("-") > 0 

inv "value xor uncertainRange": not (value.oclIsDefined and 

        uncertainRange.isNotNull) 

inv "null or value": isNotNull implies (value.oclIsDefined  

        or uncertainRange.isNotNull) 

inv "uncertain types": uncertainRange.low.oclIsDefined implies  

       uncertainRange.low.oclIsKindOf(PQ) and 

      uncertainRange.high.oclIsDefined implies  

       uncertainRange.high.oclIsKindOf(PQ) and 

      uncertainty.oclIsDefined implies  

       uncertainty.oclIsKindOf(PQ) 

inv "uncertainties - units": uncertainRange.low.oclIsDefined  

      implies uncertainRange.canonical.unit = "s" and 

     uncertainRange.high.oclIsDefined implies 

     uncertainRange.high.canonical.unit = "s" and 

     uncertainty.oclIsDefined implies  

     uncertainty.canonical.unit = "s" 

 

context TS::isDifference(other : QTY): Boolean 

  post: other.oclIsKindOf(TS) and canonical.unit = "s" 

 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 99 
 

7.8.13.6 Operations 

7.8.13.6.1 plus( ) (other : PQ) : TS: The value of the addition of this and other; if other.units are not a time, 
NullFlavor NI. 

7.8.13.6.2 minus[ ] (other : PQ) : TS: The value of the subtraction of other from this; if other.units are not a 
time, NullFlavor NI. 

7.8.13.6.3 minus[ ] (other : TS) : PQ: The value of the subtraction of other from this; the return value will 
have units that are a time. 

7.8.13.6.4 max(other : TS) : TS: The maximum of this and other. 

7.8.13.6.5 min(other : TS) : TS: The minimum of this and other. 

7.8.13.6.6 toInterval() : IVL(TS): Converts this value to an interval that expresses the range covered by the 
precision. 

7.8.13.6.7 precision() : Integer : The number of significant digits of the timestamp value. 

7.8.13.6.8 comparable(other : QTY):BL: This and other can be compared if other is a TS. 

7.8.13.7 Examples 

7.8.13.7.1 Instant in time 

<example xsi:type="TS" value="20031101234511+0500"/> 

11:45pm on 01-Nov 2003 at +5 from UTC (e.g. US eastern). 

7.8.13.7.2 Birth date  

<example xsi:type="TS" value="1945"/> 

Patient was born in 1945. Month and day are unknown. 

The outcome of toIVL() for this example would be the following interval: 

<example xsi:type="IVL_TS" lowClosed="true" highClosed="false"> 

  <low value="194501010000.0000"/> 

  <high value="194601010000.0000"/> 

</example> 

7.8.14 TS.DATE 

7.8.14.1 Description 

A flavour that constrains TS. 

TS.DATE constrains TS so that it may only contain a date value. 



ISO/FDIS 21090:2009(E) 

100 © ISO 2009 – All rights reserved 

 

7.8.14.2 Invariants 

 no timezone; 

 no hours, minutes, seconds or milliseconds. 

OCL for Invariants 

  inv "Date": not hasTimezone and value.size <= 8 

 

7.8.15 TS.DATE.FULL 

7.8.15.1 Description 

A flavour that constrains TS.DATE 

TS.DATE.FULL constrains TS.DATE so that it must contain reference to a particular day. 

7.8.15.2 Invariants 

 a full day shall be specified. 

OCL for Invariants 

  inv "Full Date": value.size = 8 

 

7.8.16 TS.DATETIME 

7.8.16.1 Description 

A flavour that constrains TS 

TS.DATETIME constrains a TS so that its precision can not be more precise than seconds. 

7.8.16.2 Invariants 

 milliseconds shall be blank. 

OCL for Invariants 

  inv "DateTime": (value.size <= 14) or (hasTimezone and  

  value.size <= 19) 

 

7.8.17 TS.DATETIME.FULL 

7.8.17.1 Description 

A flavour that constrains TS.DATETIME. 

TS.DATETIME.FULL constrains TS.DATETIME so that it shall contain reference to a particular second with a 
timezone. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 101 
 

7.8.17.2 Invariants 

 a timezone is required; 

 a full time, including seconds and timezone, is required. 

OCL for Invariants 

  inv "Full DateTime": value.size = 19 and hasTimezone 

 

7.8.18 TS.INSTANT 

7.8.18.1 Description 

A flavour that constrains TS. 

TS.INSTANT constrains TS so that it must contain reference to a particular instant of time, accurate to four 
decimal places on the second, with a timezone. 

7.8.18.2 Invariants 

 a timezone is required; 

 a full time, including fractions of seconds to 4 decimal and timezone, is required. 

OCL for Invariants 

  inv "Instant": value.size = 24 and hasTimezone 



ISO/FDIS 21090:2009(E) 

102 © ISO 2009 – All rights reserved 

 

7.9 Collections Of datatypes 

7.9.1 Overview 

These datatypes data types are collections of discrete elements. See Figure 8. 

 

Figure 8 — Collection datatypes 

7.9.2 COLL 

7.9.2.1 Description 

Abstract. Specializes ANY. 

Parameter: T : ANY 

A collection of values which can be enumerated using an iterator. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 103 
 

7.9.2.2 Operations 

7.9.2.2.1 size() : INT: The number of elements in this collection. 

7.9.2.2.2 includes(object : T) : BL: True if object is an element of this collection. The equals operation is 
used to evaluate whether object is an element of this collection. This is also known as "contains―: a collection 
contains object o if includes(o) returns true. 

7.9.2.2.3 excludes(object : T) : BL: True if object is not an element of this collection. The equals operation 
is used to evaluate whether object is not an element of this collection. 

7.9.2.2.4 count(object : T) : INT: The number of times that object occurs in the this collection. The equals 
operation is used to evaluate how many times object is in the collection. 

7.9.2.2.5 includesAll(c2 : Collection(T)) : BL: True if this collection contains all the elements of c2. 

7.9.2.2.6 excludesAll(c2 : Collection(T)) : BL: True if this collection contains none of the elements of c2. 

7.9.2.2.7 isEmpty() : BL: True if this collection is the empty collection. 

7.9.2.2.8 notEmpty() : BL: True if this collection is not the empty collection. 

7.9.2.3 Equality 

Equality is not defined for COLL as it is an abstract type. 

7.9.3 DSET (discrete set) 

7.9.3.1 Description 

Specializes COLL. 

Parameter: T : ANY. 

A collection that contains distinct and discrete values in no particular order. 

Valid (non-nullFlavored) discrete sets shall not contain duplicate items. The context of use shall define how 
elements are compared when checking set element uniqueness. By default, the uniqueness definition is 
based on the equality rules defined in this International Standard: Discrete sets shall not contain different 
values that are equal, and they shall not contain items that are null or have a nullFlavor, where the equality 
cannot be evaluated. When a discrete set is actually used, the context of use may specify an alternative 
definition for how uniqueness is evaluated. This alternative definition may allow for nullFlavored values in a 
proper set. Information processing entities providing alternative definitions for the uniqueness of a set shall 
make it clear in the conformance statement how such definitions are provided so that there is no ambiguity. 

While proper (non-nullFlavored) sets will not contain values that do not meet the definition of uniqueness, 
discrete sets with a nullFlavor may contain elements duplicate values or values that have a nullFlavor. 
Discrete sets that are labelled as mandatory cannot have a nullFlavor and therefore cannot contain such 
values.. 

7.9.3.2 ISO/IEC 11404 syntax 

 type DSET (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 



ISO/FDIS 21090:2009(E) 

104 © ISO 2009 – All rights reserved 

 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   item : Bag(T) 

 ) 

 

NOTE DSET specifies a set of discrete items. If the items are in an ordered but discrete domain (i.e. INT) and they 
represent a sequence of concurrent values such as 2,3,4,5, then the same set can also be specified by a QSET such as 

IVL(2..5). However for all other cases, there is no overlap between QSET and DSET. 

7.9.3.3 Attributes 

7.9.3.3.1 item : Bag(T): The contents of the set. 

This is an example of the primitive type wrapping pattern. See 6.3 for more details. 

The items are held in a bag because the context of use specifies exactly how uniqueness is specified for the 
DSET. The OCL kernel set applies a fixed definition of equality – the equality specified for the type – which 
may be less granular that the context of use. Though the internal structure allows duplicates, all the items in 
the set shall be unique according the definition provided by the context of use. If the context of use does not 
make this clear, the default behaviour is the equality definitions provided in this International Standard.  

NOTE There is no support for the formal definition of the uniqueness constraints because of the cost of providing 

such a framework, and the lack of apparent use for one. 

7.9.3.4 Equality 

Two nonNull DSETs are equal if they contain the same elements. 

NOTE 1 The determination of element content is based on the same semantic equals as defined in this International 
Standard, so it is possible that a DSET(CD) can be equal to DSET(CS), for instance. 

NOTE 2 It is possible for a DSET(INT) and a QSET(INT) to be equal, if they both contain the same elements. 

7.9.3.5 Invariants 

(none) 

NOTE Rules about updateMode or history are applied to item where BAG(T) is used. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 105 
 

7.9.3.6 Operations 

7.9.3.6.1 union(s : DSET(T)) : DSET(T): The SET containing all elements of this plus all the elements of 
other, with any duplicates removed. union is an alias for including. 

7.9.3.6.2 union(bag : BAG(T)) : BAG(T): The SET containing all elements of this plus all the elements of 
other, with any duplicates removed 

7.9.3.6.3 intersection(s : DSET(T)) : DSET(T): The intersection of this and s (i.e, the SET of all elements 
that are in both this and s). 

7.9.3.6.4 intersection(bag : BAG(T)) : DSET(T): The intersection of this and bag. 

7.9.3.6.5 minus[ ](s : DSET(T)) : DSET(T): The elements of this, which are not in s. 

7.9.3.6.6 including(object : T) : DSET(T): The SET containing all elements of this plus object if it is not 
already in the set. including is an alias for union. 

7.9.3.6.7 including(other : DSET(T)) : DSET(T): The SET containing all elements of this plus all the 
elements of other, with any duplicates removed. 

7.9.3.6.8 excluding(object : T) : DSET(T): The SET containing all elements of this without object. 

7.9.3.6.9 excluding(other : DSET(T)) : DSET(T): The SET containing all elements of this with any 
elements of other removed . 

7.9.3.6.10 symmetricDifference(s : DSET(T)) : DSET(T): The sets containing all the elements that are in 
this or s. 

7.9.3.6.11 asList() : LIST(T): A sequence that contains all the elements from this, in an undefined order. 

7.9.3.6.12 asBag() : BAG(T): The bag that contains all the elements from this. 

7.9.3.7 Examples 

7.9.3.7.1 Integer Sets 

<example xsi:type="DSET_INT"> 

  <item value="3"/> 

  <item value="6"/> 

  <item value="9"/> 

  <item value="11"/> 

</example> 

The set of integers (3,6,9,11). The set type specifies the type of the items in the set (xsi:type="DSET" is not 
correct as SET is a generic type). 

 

<example xsi:type="DSET_INT"> 

  <item value="11"/> 

  <item value="6"/> 

  <item value="9"/> 

  <item value="3"/> 

</example> 

This set is identical to the previous set – order has no significant in sets. 



ISO/FDIS 21090:2009(E) 

106 © ISO 2009 – All rights reserved 

 

7.9.3.7.2 Problems with sets 

<example xsi:type="DSET_TEL"> 

  <item value="tel:+15556667777" use="H"/> 

  <item nullFlavor="UNK" use="WP"/> 

</example> 

A set of telephone numbers, with a known home telephone number, and an unknown work number. 
IMPORTANT: This is an illegal set: sets cannot contain nullValues. 

<example xsi:type="DSET_TEL" nullFlavor="UNK"> 

  <item value="tel:+15556667777" use="H"/> 

  <item nullFlavor="UNK" use="WP"/> 

</example> 

This is the same set properly represented. Because one of the values is unknown, the set itself is unknown. 

NOTE In general, addresses and telephone numbers should not be modelled as DSETs for this reason, as once they 
are marked mandatory, unknown numbers can no longer be represented. 

 

<example xsi:type="DSET_REAL"> 

  <item value="3.1"/> 

  <item value="3.5"/> 

</example> 

Where the items are not discrete (PQ, MO, REAL), a discrete set is rather ambiguous. For example, is 3.103 a 
member of this set or not? For this reason, DSET should not be used with these types. 

7.9.4 LIST (sequence) 

7.9.4.1 Description 

Specializes COLL. 

Parameter: T : ANY. 

A collection that contains discrete (but not necessarily distinct) values in a defined sequence. Values are also 
assigned an offset; the first value has the offset of zero. 

The sequence is an ordered collection of values, but no particular order is inherently associated with the 
sequence. The meaning of the order of the items should be defined where a LIST is used. In some cases, the 
order is fixed ( e.g. HIST), but in other cases, the order is not fixed: only the meaning associated with the 
order in the instance is defined (e.g. EN, AD). 

7.9.4.2 ISO/IEC 11404 syntax 

 type LIST (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   item : Sequence(T) 

 ) 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 107 
 

7.9.4.3 Attributes 

7.9.4.3.1 item : Sequence(T): The contents of the sequence. 

This is an example of the primitive type wrapping pattern. See 6.3 for more details. 

7.9.4.4 Equality 

Two lists are equal if – and only if – they are both empty, or if they contain the same elements in the same 
order. 

NOTE 1 The determination of element content is based on the same semantic equals as defined in this International 

Standard, so it is possible that a LIST(ED) can be equal to LIST(ST), for instance. 

NOTE 2 SLIST equality is based on the equality of a sequence of values, so a SLIST<T> may be equal to a LIST<T>. 

7.9.4.5 Invariants 

(none) 
 

NOTE Rules about updateMode or history are applied to item where BAG(T) is used. 

7.9.4.6 Operations 

7.9.4.6.1 append(s : LIST(T)) : LIST(T): The LIST consisting of all elements in this, followed by all 
elements in s. 

7.9.4.6.2 append(s : DSET(T)) : LIST(T): The LIST consisting of all elements in this, followed by all 
elements in s in some arbitrary order. This is an alias for including. 

7.9.4.6.3 append (object: T) : LIST(T): The LIST of elements, consisting of all elements of this, followed 
by object. 

7.9.4.6.4 prepend(object : T) : LIST(T): The LIST consisting of object, followed by all elements in this. 

7.9.4.6.5 insertAt(object : T, index : Integer) : LIST(T): The LIST consisting of this with object inserted at 
position index. If index is equal or greater than the length of the LIST, the value will be null. 

7.9.4.6.6 subList(lower : Integer, upper : Integer) : LIST(T): The sub-LIST of this starting at number 
lower, up to and including element number upper. If lower or upper are equal or greater than the length of the 
LIST or less than 0, or lower is greater than upper, the value will be null. 

7.9.4.6.7 at(i : Integer) : T: The i-th element of LIST. If i is equal or greater than the length of the LIST, the 
value will be null. The first element of the list has i = 0 

7.9.4.6.8 indexOf(obj : T) : Integer: The index of object obj in the LIST or null if the item exists other than 
once (not at all, or multiple times). 

7.9.4.6.9 first() : T: The first element in this or null if it is empty. 

7.9.4.6.10 last() : T: The last element in this or null if it is empty. 

7.9.4.6.11 tail() : LIST(T): The list with the first element removed or null if it is empty. 



ISO/FDIS 21090:2009(E) 

108 © ISO 2009 – All rights reserved 

 

7.9.4.6.12 including(object : T) : LIST(T): The LIST containing all elements of this plus object added as the 
last element. This is an alias for append. 

7.9.4.6.13 excluding(object : T) : LIST(T): The LIST containing all elements of this apart from all 
occurrences of object. The order of the remaining elements is not changed. 

7.9.4.6.14 asBag() : BAG(T): The Bag containing all the elements from this, including duplicates, or a 
nullFlavor as appropriate. 

7.9.4.6.15 asSet() : DSET(T): The Set containing all the elements from this, with duplicated removed. 

7.9.4.7 Examples 

<example xsi:type="LIST_INT"> 

  <item value="3"/> 

  <item value="11"/> 

  <item value="6"/> 

  <item value="9"/> 

</example> 

A list of integers. The order is significant and must always be maintained. 

7.9.5 GLIST (generated sequence) 

7.9.5.1 Description 

Specializes ANY. 

Parameter: T : QTY. 

A periodic or monotone sequence of values generated from a few parameters, rather than being enumerated. 
Used to specify regular sampling points for biosignals. 

7.9.5.2 ISO/IEC 11404 syntax 

 type GLIST (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   head: T, 

   increment : QTY, 

   denominator : integer, 

   period : integer 

 ) 

7.9.5.3 Attributes 

7.9.5.3.1 head : T: The first item in this sequence. This is the start-value of the generated list. 

7.9.5.3.2 increment : QTY: The difference between one value and its previous different value. 

EXAMPLE: To generate the sequence (1; 4; 7; 10; 13; ...) the increment is 3; likewise to generate the sequence (1; 1; 
4; 4; 7; 7; 10; 10; 13; 13; ...) the increment is also 3. The actual type QTY will be dictated by the type of T. The value of 

increment must be positive. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 109 
 

7.9.5.3.3 denominator : Integer: The integer by which the index for the sequence is divided, effectively the 
number of times the sequence generates the same sequence item value before incrementing to the next 
sequence item value. 

EXAMPLE: To generate the sequence (1; 1; 1; 2; 2; 2; 3; 3; 3; ...) the denominator is 3. 

The use of the denominator is to allow multiple generated sequences to periodically scan a multidimensional 
space. For example, an (abstract) TV screen uses 2 such generators for the columns and rows of pixels. For 
instance, if there are 200 scan lines and 320 raster colunmns, the column-generator would have denominator 
1 and the line-generator would have denominator 320. 

7.9.5.3.4 period : Integer: If not null or nullFlavored, specifies that the sequence alternates, i.e., after this 
many increments, the sequence item values roll over to start from the initial sequence item value. 

EXAMPLE: The sequence (1; 2; 3; 1; 2; 3; 1; 2; 3; ...) has period 3; also the sequence (1; 1; 2; 2; 3; 3; 1; 1; 2; 2; 3; 

3; ...) has period 3. 

The period allows to repeatedly sample the same sample space. The "waveform" of this periodic generator is 
always a "saw", just like the x-function of your oscilloscope. 

7.9.5.4 Equality 

GLIST is a list generator. Two GLISTs are equal if they specify the same sequence of elements. 

Since GLISTs are infinite, and LISTs cannot be infinite, they can never been equal. 

7.9.5.5 Invariants 

 if the GLIST is not nullFlavored, all attributes but the period are required; 

 denominator must be positive; 

 the period must be positive. 

OCL for Invariants: 

  inv "required attributes": isNull xor (head.isNotNull and 

increment.isNotNull and denominator.oclIsDefined) 

  inv "denominator must be positive": denominator.oclIsDefined 

 implies denominator > 0 

  inv "period must be positive": period.oclIsDefined implies 

        period > 0 

  inv "no updateMode or History on GLIST attributes":  

  noUpdateOrHistory(head) and noUpdateOrHistory(increment) 

 

7.9.5.6 Operations 

7.9.5.6.1 subList(lower : Integer, upper : Integer) : LIST(T): A sub-LIST of this GLIST, starting at number 
lower, up to and including element number upper. If lower or upper are equal or greater than the length of the 
LIST or less than 0, or lower is greater than upper, the value will be null. 

7.9.5.6.2 at(i : Integer) : T: The i-th element of LIST. If i is equal or greater than the length of the LIST, the 
value will be null. 



ISO/FDIS 21090:2009(E) 

110 © ISO 2009 – All rights reserved 

 

7.9.5.7 Examples 

<example xsi:type="GLIST_PQ" period="100" denominator="100"> 

  <head value="0" unit="V"/> 

  <increment xsi:type="PQ" value="1" unit="mV"/> 

</example> 

The x-wave of a digital oscillograph scanning between 0 and 100 mV in 100 steps of 1 mV. The frequency is 
unknown from these data as we do not know how much time elapses between each step of the index.  

Example 65 

<example xsi:type="GLIST_TS" denominator="1"> 

  <head value="20020729203000"/> 

  <increment xsi:type="PQ" value="100" unit="us"/> 

</example> 

A timebase from June 29, 2002 at 8:30 PM with 100 µs between each steps of the index. If combined with the 
previous generator as a second sampling dimension this would now describe our digital oscilloscope's x-
timebase as 1 mV per 100 µs. At 100 steps per period, the period is 10 ms, which is equal to a frequency of 
100 Hz.  

Other examples: 

Head Increment Deno-
minator 

Period Meaning 

0 1 1 
∞ (NullFlavor. 
PINF) 

The identity-sequence where each 
item is equal to its index. 

198706052000 2 h 1 
∞ (NullFlavor. 
PINF) 

Sequence starting on June 5, 1987 at 
7 PM and incrementing every two 
hours: 9 PM, 11 PM, 1 AM (June 6), 
3 AM, 5 AM and so on. 

0 V 1 mV 1 100 

The x-wave of a digital oscillograph 
scanning between 0 mV and 100 mV 
in 100 steps of 1 mV. The frequency 
is unknown from these data as we do 
not know how much time elapses 
between each step of the index. 

2002072920300 100 µs 1 
∞ (NullFlavor. 
PINF) 

A timebase from June 29, 2002 at 
8:30 PM with 100 µs between each 
step of the index. If combined with 
the previous generator as a second 
sampling dimension this would now 
describe our digital oscilloscope's x-
timebase as 1 mV per 100 µs. At 
100 steps per period, the period is 
10 ms, which is equal to a frequency 
of 100 Hz. 

     

     

     

     



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 111 
 

0 V 1 mV 100 100 

Combining this generator to the 
previous two generators could 
describe a three-dimensional 
sampling space with two voltages 
and time. This generator also steps 
at 1 mV and has 100 steps per 
period, however, it only steps every 
100 index increments, so, the first 
voltage generator makes one full 
cycle before this generator is 
incremented. One can think of the 
two voltages as "rows" and "columns" 
of a "sampling frame". With the 
previous generator as the timebase, 
this results in a scan of sampling 

frames of 100 mV  100 mV with a 
frame rate of 1 Hz. 

7.9.6 SLIST (sampled sequence) 

7.9.6.1 Description 

Specializes ANY. 

Parameter: T : QTY. 

A sequence of sampled values scaled and translated from a list of integer values. Used to specify sampled 
biosignals. 

7.9.6.2 ISO/IEC 11404 syntax 

 type SLIST (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   origin : T, 

   scale : QTY, 

   digits : Sequence(INT) 

 ) 

7.9.6.3 Attributes 

7.9.6.3.1 origin : T: The origin of the list item value scale. The physical quantity that a zero-digit in the 
sequence would represent. 

7.9.6.3.2 scale : QTY: A ratio-scale quantity that is factored out of the digit sequence. The actual type QTY 
will be dictated by the type of T. 

7.9.6.3.3 digits : Sequence(INT): A sequence of raw digits for the sample values. This is typically the raw 
output of an A/D converter. 



ISO/FDIS 21090:2009(E) 

112 © ISO 2009 – All rights reserved 

 

7.9.6.4 Equality 

SLIST specifies a LIST. Two SLISTs are equal if they specify the same sequence of values. 

NOTE Because SLIST specifies a LIST, and equality is basd on the LIST that is specified, it is possible that a 

LIST<PQ> will be equal to a SLIST<PQ>. 

7.9.6.5 Invariants 

 scale shall be a difference from the origin; 

 if the SLIST is not nullFlavored, an origin and at least one digit is required. 

OCL for Invariants: 

  inv "required attributes": isNull xor (origin.isNotNull and 

       digits->select(d | d.isNotNull)->size > 0) 

  inv "type of scale": scale.oclIsDefined implies 

 origin.isDifference(scale) 

  inv "no updateMode or History on SLIST attributes":  

  noUpdateOrHistory(origin) and noUpdateOrHistory(scale) 

       and digits->forAll(d | noUpdateOrHistory(d)) 

7.9.6.6 Operations 

7.9.6.6.1 insertAt(object : T, index : Integer) : SLIST(T): The SLIST consisting of this SLIST with object 
inserted at position index. If index is equal to or greater than the length of the LIST, the value will be null. If 
object does not compare with the other objects in the list, the value will be null. 

7.9.6.6.2 subList(lower : Integer, upper : Integer) : SLIST(T): The sub-LIST of this starting at number 
lower, up to and including element number upper. If lower or upper are equal or greater than the length of the 
LIST or less than 0, or lower is greater than upper, the value will be null. 

7.9.6.6.3 at(i : Integer) : T: The i-th element of LIST. If i is equal or greater than the length of the LIST, the 
value will be null. 

7.9.6.6.4 indexOf(obj : T) : Integer: The index of object obj in the LIST or null if the item exists more than 
once. 

7.9.6.6.5 first() : T: The first element in this or null if it is empty. 

7.9.6.6.6 last() : T: The last element in this or null if it is empty. 

7.9.6.6.7 tail() : SLIST(T): The list with the first element removed or null if it is empty. 

7.9.6.6.8 including(object : T) : SLIST(T): The LIST containing all elements of this plus object added as 
the last element. 

7.9.6.6.9 excluding(object : T) : SLIST(T): The LIST containing all elements of this apart from all 
occurrences of object. The order of the remaining elements is not changed. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 113 
 

7.9.6.7 Examples 

<example xsi:type="SLIST_PQ"> 

   <origin value='0' unit='uV'/> 

   <scale xsi:type="PQ" value='2.5' unit='uV'/> 

   <digit value="-4"/> 

   <digit value="-13"/> 

   <digit value="-18"/> 

   <digit value="-18"/> 

   <digit value="-18"/> 

   <digit value="-17"/> 

   <digit value="-16"/> 

   <digit value="-16"/> 

   <digit value="-16"/> 

   <digit value="-16"/> 

   <digit value="-16"/> 

   <digit value="-17"/> 

   <digit value="-18"/> 

   <digit value="-18"/> 

   <digit value="-1"/> 

   <digit value="-17"/> 

   <digit value="-16"/> 

   <digit value="-16"/> 

   <digit value="-16"/> 

   <digit value="-15"/> 

   <digit value="-13"/> 

   <digit value="-11"/> 

   <digit value="-10"/> 

   <digit value="-10"/> 

   <digit value="-9"/> 

   <digit value="-6"/> 

   <digit value="-4"/> 

   <digit value="-5"/> 

   <digit value="-5"/> 

   <digit value="-3"/> 

   <digit value="-2"/> 

   <digit value="-2"/> 

   <digit value="-1"/> 

   <digit value="1"/> 

   <digit value="2"/> 

   <digit value="3"/> 

   <digit value=""/> 

   <digit value="7"/> 

   <digit value="8"/> 

   <digit value="9"/> 

   <digit value="10"/> 

   <digit value="11"/> 

   <digit value="12"/> 

   <digit value="13"/> 

   <digit value="15"/> 

   <digit value="17"/> 

   <digit value="19"/> 

   <digit value="21"/> 

   <digit value="23"/> 

   <digit value="25"/> 

   <digit value="27"/> 

   <digit value="29"/> 

   <digit value="30"/> 

   <digit value="30"/> 

   <digit value="31"/> 

   <digit value="34"/> 

   <digit value="37"/> 

   <digit value="40"/> 

   <digit value="43"/> 

   <digit value="45"/> 

   <digit value="4"/> 

   <digit value="46"/> 



ISO/FDIS 21090:2009(E) 

114 © ISO 2009 – All rights reserved 

 

   <digit value="46"/> 

   <digit value="46"/> 

   <digit value="46"/> 

   <digit value="47"/> 

   <digit value="49"/> 

   <digit value="51"/> 

   <digit value="53"/> 

   <digit value="55"/> 

   <digit value="57"/> 

   <digit value="59"/> 

   <digit value="60"/> 

   <digit value="59"/> 

   <digit value="58"/> 

   <digit value="58"/> 

   <digit value="58"/> 

   <digit value="57"/> 

   <digit value="56"/> 

   <digit value="56"/> 

   <digit value="56"/> 

   <digit value="57"/> 

   <digit value="57"/> 

   <digit value="5"/> 

   <digit value="53"/> 

   <digit value="50"/> 

   <digit value="47"/> 

   <digit value="45"/> 

   <digit value="74"/> 

   <digit value="51"/> 

   <digit value="38"/> 

   <digit value="33"/> 

   <digit value="31"/> 

   <digit value="28"/> 

   <digit value="25"/> 

   <digit value="21"/> 

   <digit value="16"/> 

   <digit value="14"/> 

   <digit value="15"/> 

   <digit value="13"/> 

   <digit value="9"/> 

   <digit value="7"/> 

   <digit value="4"/> 

   <digit value="1"/> 

   <digit value="-1"/> 

   <digit value="-3"/> 

   <digit value="-4"/> 

   <digit value="-6"/> 

   <digit value="-10"/> 

   <digit value="-12"/> 

   <digit value="-13"/> 

   <digit value="-12"/> 

   <digit value="-12"/> 

   <digit value="-17"/> 

   <digit value="-18"/> 

   <digit value="-18"/> 

   <digit value="-18"/> 

   <digit value="-19"/> 

   <digit value="-20"/> 

   <digit value="-21"/> 

   <digit value="-20"/> 

   <digit value="-20"/> 

   <digit value="-20"/> 

   <digit value="-20"/> 

   <digit value="-2"/> 

   ... 

   <digit value="2"/> 

   <digit value="1"/> 

   <digit value="0"/> 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 115 
 

   <digit value="0"/> 

   <digit value="0"/> 

   <digit value="1"/> 

   <digit value="2"/> 

   <digit value="2"/> 

   <digit value="1"/> 

   <digit value="1"/> 

   <digit value="1"/> 

   <digit value="0"/> 

   <digit value="-1"/> 

   <digit value="0"/> 

   <digit value="1"/> 

   <digit value="1"/> 

   <digit value="1"/> 

   <digit value="1"/> 

   <digit value="2"/> 

   <digit nullFlavor="UNK"/> 

</example> 

This example shows Lead II of an EKG tracing, with origin calibrated at 0 μV and with a scale factor of 2,5 μV. 
The last measurement failed (to show example of nullFlavor). 

7.9.7 HIST (history) 

7.9.7.1 Description 

Specializes LIST. 

Parameter: T : ANY. 

A collection that set of items in historical order. 

7.9.7.2 ISO/IEC 11404 syntax 

 type HIST (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   item : Set(T) 

 ) 

 

NOTE The historical information pertains to the correctness of the information rather than the system's knowledge of 
the actual information. For further information see 7.3.2. 

7.9.7.3 Invariants 

 all items in the list shall have at either validTimeLow or validTimeHigh non-null; 

 the validTime periods on the list shall not overlap, and the items shall be ordered in ascending 
chronological order. 

OCL for Invariants: 

  inv "validTime required": item->forAll(i |  

        i.validTimeLow.oclIsDefined or  

        i.validTimeHigh.oclIsDefined) 



ISO/FDIS 21090:2009(E) 

116 © ISO 2009 – All rights reserved 

 

    

7.9.7.4 Examples 

<example xsi:type="HIST_TEL"> 

  <item nullFlavor="UNK" use="WP H" validTimeHigh="199206"/> 

  <item value="tel:+15552225543" use="H" validTimeLow="199206"  

     validTimeHigh="199207"/> 

  <item value="tel:+15556667777" use="H" validTimeLow="199207"/> 

</example> 

This specifies a known history of home phone numbers. 

7.9.8 BAG (bag) 

7.9.8.1 Description 

Specializes COLL. 

Parameter: T : ANY. 

An unordered collection of values, where each value can be contained more than once in the collection. 

7.9.8.2 ISO/IEC 11404 syntax 

 type BAG (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   item : Bag(T) 

 ) 

7.9.8.3 Attributes 

7.9.8.3.1 item : Bag(T): The contents of the Bag. 

This is an example of the primitive type wrapping pattern. See 6.3 for more details. 

7.9.8.4 Equality 

Two bags are equal if – and only if – they are both empty, or if they contain the same items, with the same 
number of each item present. 

NOTE the determination of element content is based on the same semantic equals as defined in this International 

Standard, so it is possible that a BAG(CD) can be equal to BAG(CO), for instance. 

7.9.8.5 Invariants 

(none) 

NOTE Rules about updateMode or history are applied to item where BAG(T) is used. 

7.9.8.6 Operations 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 117 
 

7.9.8.6.1 union(bag : BAG(T)) : BAG(T): The union of this and bag. If a value is contained multiple times, 
the total count of the value‘s occurance in the result of the union will the sum of the occurances in this and bag. 
This is an alias for including. 

7.9.8.6.2 union(set : DSET(T)) : BAG(T): The union of this and set. If a value is contained in both the bag 
and the set, the total count of the value‘s occurance in the result of the union will be one greater than the 
number of occurances in this. This is an alias for including. 

7.9.8.6.3 intersection(bag : BAG(T)) : BAG(T): The intersection of this and bag. 

7.9.8.6.4 intersection(set : DSET(T)) : DSET(T): The intersection of this and set. 

7.9.8.6.5 including(object : T) : BAG(T): The bag containing all elements of this plus object. If object is 
already in this, it will occur another extra time in the result. 

7.9.8.6.6 including(coll  : COLL(T)) : BAG(T): The bag containing all elements of this plus any elements 
in coll. This is an alias for union. 

7.9.8.6.7 excluding(object : T) : BAG(T): The bag containing all elements of this apart from all 
occurrences of object. 

7.9.8.6.8 excluding(coll  : COLL(T)) : BAG(T): The bag containing all elements of this apart from any 
objects that are found in coll. 

7.9.8.6.9 asList() : LIST(T): A sequence that contains all the elements from this in an undefined order. 

7.9.8.6.10 asSet() : DSET(T): The set containing all the elements from this, with duplicates removed. 

7.9.8.7 Examples 

<example xsi:type="BAG_TEL"> 

  <item value="tel:+15556667777" use="H"/> 

  <item nullFlavor="UNK" use="WP"/> 

</example> 

A bag of telephone numbers, with a known home telephone number, and an unknown work number. 

 

<example xsi:type="BAG_TEL"> 

  <item nullFlavor="UNK" use="WP"/> 

  <item value="tel:+15556667777" use="H"/> 

</example> 

This is not equal to the previous bag of telephone numbers; although order is not important, the work 
telephone number has a nullFlavor, and equality cannot be evaluated. 

7.10 Continuous set datatypes 

7.10.1 Overview 

These datatypes provide support for collections of data. See Figure 9. 



ISO/FDIS 21090:2009(E) 

118 © ISO 2009 – All rights reserved 

 

7.10.2 QSET (continuous set) 

7.10.2.1 Description 

Abstract; specializes ANY. 

Parameter: T : QTY. 

An unordered set of distinct values that are quantities. 

Any ordered type can be the basis of a QSET; it does not matter whether the base type is discrete or 
continuous. If the base datatype is only partially ordered, all elements of the QSET must be elements of a 
totally ordered subset of the partially ordered datatype (for example, PQ is only ordered when the units are 
consistent. Every value in a QSET(PQ) shall have the same canonical unit). 

QSET is an abstract type. A working QSET is specified as an expression tree built using a combination of 
operator (QSI, QSD, QSU, QSP) and component types (QSC, QSS and IVL; and for TS, PIVL and EIVL). 

QSETs shall not contain null or nullFlavored values as members of the set. 

7.10.2.2 ISO/IEC 11404 syntax 

 type QSET (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT 

) 

 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 119 
 

 

Figure 9 — Continuous set datatypes 



ISO/FDIS 21090:2009(E) 

120 © ISO 2009 – All rights reserved 

 

 

7.10.2.3 Attributes 

7.10.2.3.1 originalText : ED.TEXT: The text representation from which the QSET was encoded, if such a 
representation is the source of the QSET. 

Original text can be used in a structured user interface to capture what the user saw as a representation of the 
set on the data input screen, or in a situation where the user dictates or directly enters text, it is the text 
entered or uttered by the user. 

It is valid to use a QSET derived datatype to store only the text that the user entered or uttered. In this 
situation, original text will exist without a valid value. The originalText is not a substitute for a valid value. If the 
actual content of the QSET is not valid, then the QSET shall be nullFlavored, irrespective of whether 
originalText has a value or not. 

The original text shall be an excerpt of the relevant information in the original sources, rather than a pointer or 
exact reproduction. Thus the original text shall be represented in plain text form. In specific circumstances, 
when clearly descirbed the context of use, the originalText may be a reference to some other text artefact for 
which the resolution scope is clearly described. 

NOTE The details of the link in the originalText.reference between different artifacts of medical information (e.g., 
document and coded result) is outside the scope of this International Standard and can be further proscribed in 

specifications that use this International Standard. 

7.10.2.4 Equality 

The notional equality determination for QSET and all its descendants except IVL is based on set membership: 
two QSETs are equal if they contain the same members. However, QSETs are used to build expression trees 
that may become quite complex. It is not feasible to determine whether two different QSET expression trees 
describe the same set of elements, so the determination for whether two QSETs are equal is the default 
equality test defined in ANY. 

This equality test applies to all QSET specializations except for IVL, and is not specified for the other 
specializations. 

7.10.2.5 Invariants 

OCL for invariants: 

  inv "No History or Update Mode":  

 noUpdateOrHistory(originalText) 

7.10.2.6 Operations 

7.10.2.6.1 contains (x: T): BL: True if the QSET contains the value x. 

7.10.2.6.2 hull (x: QSET(T)): IVL(T) : The convex hull of this set with x, which is the smallest interval that is 
a superset of this and x. See Figure 10. 

 

Figure 10 — Convex hull 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 121 
 

NOTE The convex hull of a QSET can less formally be called the "outer bound interval". Thus the convex hull of a 

QSET describes the absolute beginning and end of a schedule. For some set specifications, where there is infinite 

repetition [e.g., a PIVL(TS)] the convex hull has infinite bounds. The term "schedule" is used throughout this section in its 

general sense, that of an organized series of values. The more common meaning of the term "schedule", that of a time-
based plan of events, is exactly a QSET(TS). 

7.10.2.7 Examples 

7.10.2.7.1 QSET(TS) 

The type QSET(TS) is also known as GTS: general timing specification. 

The first example specifies every other Tuesday in the season from the (US holidays) Memorial Day to Labor 
Day in the years 2002 and 2003. This is built as an expression of the intersection between 3 sets: 

 every other Tuesday; 

 the years 2002 and 2003; 

 the season between Memorial Day and Labor Day. 

Example 80  

<example xsi:type="QSI_TS">  

  <!-- intersection, because it is a QSI --> 

 

  <!-- every other Tuesday --> 

  <term xsi:type='PIVL_TS' alignment='DW'> 

    <phase lowClosed='true' highClosed='false'> 

      <low value='20001202'/> 

      <high value='20001203'/> 

    </phase> 

    <period value='2' unit='wk'/> 

  </term> 

 

  <!-- 2002 and 2003 --> 

  <term xsi:type='IVL_TS' lowClosed='true' highClosed='false'> 

    <low value='20020101'/> 

    <high value='20040101'/> 

  </term>      

  

  <!-- season between Memorial Day and Labor Day --> 

  <!-- periodic hull between Memorial day and Labor Day --> 

  <term xsi:type='QSP_TS'> 

    <low xsi:type="QSI_TS">  

      <!-- memorial day: intersection of last week of May and mondays --> 

      <term xsi:type='PIVL_TS'> 

        <phase highClosed='false'> 

          <low value='19870525'/> 

          <high value='19870601'/> 

        </phase> 

        <period value='1' unit='a'/> 

      </term> 

      <term xsi:type='PIVL_TS'> 

        <phase highClosed='false'> 

          <low value='19870105'/> 

          <high value='19870106'/> 

        </phase> 

        <period value='1' unit='wk'/> 

      </term> 

    </low> 

    <high xsi:type="QSI_TS"> 

      <!-- labor day :  intersection of first week of Sept and mondays --> 

      <term xsi:type='PIVL_TS'> 



ISO/FDIS 21090:2009(E) 

122 © ISO 2009 – All rights reserved 

 

        <phase highClosed='false'> 

          <low value='19870901'/> 

          <high value='19870908'/> 

        </phase> 

        <period value='1' unit='a'/> 

      </term> 

      <term xsi:type='PIVL_TS'> 

        <phase highClosed='false'> 

          <low value='19870105'/> 

          <high value='19870106'/> 

        </phase> 

        <period value='1' unit='wk'/> 

      </term> 

    </high>  

  </term> 

</example> 

 

7.10.3 QSU (QSET Union) 

7.10.3.1 Description 

Specializes QSET. 

Specifies a QSET as a union of other sets. 

7.10.3.2 ISO/IEC 11404 syntax 

 type QSU (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   terms : Set(QSET(T)) 

) 

 

7.10.3.3 Attributes 

7.10.3.3.1 terms : Set(QSET(T)): A list of other QSETs that are involved in the union. 

7.10.3.4 Invariants 

 a nonNull QSU may only contain nonNull QSETs; 

 at least two sets shall be specified. 

OCL for invariants: 

  inv "not null": isNotNull implies terms->forAll(t |  

 t.isNotNull) 

  inv "size": isNotNull implies terms->size >= 2 

 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 123 
 

7.10.4 QSI (QSET intersection) 

7.10.4.1 Description 

Specializes QSET. 

Specifies a QSET as an intersection of other sets. 

7.10.4.2 ISO/IEC 11404 syntax 

 type QSI (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   terms : Set(QSET(T)) 

) 

 

7.10.4.3 Attributes 

7.10.4.3.1 terms : Set(QSET(T)): A list of other QSETs that are involved in the intersection. 

7.10.4.4 Invariants 

 a nonNull QSI may only contain nonNull QSETs; 

 at least 2 sets must be specified. 

OCL for invariants: 

  inv "not null": isNotNull implies terms->forAll(t |  

 t.isNotNull) 

  inv "size": isNotNull implies terms->size >= 2 

 

7.10.5 QSD (QSET difference) 

7.10.5.1 Description 

Specializes QSET. 

Specifies a QSET as the difference between two sets. 

7.10.5.2 ISO/IEC 11404 syntax 

 type QSU (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 



ISO/FDIS 21090:2009(E) 

124 © ISO 2009 – All rights reserved 

 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   minuend : QSET(T) 

   subtrahend : QSET(T) 

) 

 

The difference is the second set subtracted from the first. 

7.10.5.3 Attributes 

7.10.5.3.1 minuend : QSET(T): The set from which the second set is subtracted. 

7.10.5.3.2 subtrahend: QSET(T): The set that is subtracted from the first set. 

7.10.5.4 Invariants 

 a nonNull QSD may only contain nonNull QSETs. 

OCL for invariants: 

  inv inv "not null": isNotNull implies (minuend.isNotNull and  

 subtrahend.isNotNull) 

 

7.10.6 QSP (QSET periodic hull) 

7.10.6.1 Description 

Specializes QSET. 

Specifies a QSET as the periodic hull between two sets as shown in Figure 11. 

 

Figure 11 — Periodic hull 

A periodic hull may be generated by comparing two sets that interleave. For QSET values A and B to 
interleave, the occurrence intervals of both groups can be arranged in pairs of corresponding occurrence 

intervals. It must further hold that for all corresponding occurrence intervals a  A and b  B, a starts before b 
starts (or at the same time) and b ends after a ends (or at the same time). 

The interleaves-relation holds when two schedules have the same average frequency, and when the second 
schedule never "outpaces" the first schedule. That is, no occurrence interval in the second schedule may start 
before its corresponding occurrence interval in the first schedule. 

7.10.6.2 ISO/IEC 11404 syntax 

 type QSP (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 125 
 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   low : QSET(T) 

   high : QSET(T) 

) 

 

7.10.6.3 Attributes 

7.10.6.3.1 low : QSET(T): The set used as the basis for the periodic hull operation. 

7.10.6.3.2 high: QSET(T): The set that is used as the parameter for the periodic hull operation. 

7.10.6.4 Invariants 

 a nonNull QSP may only contain nonNull QSETs. 

OCL for invariants: 

  inv inv "not null": isNotNull implies (low.isNotNull and  

 high.isNotNull) 

 

7.10.7 QSS (QSET Set) 

7.10.7.1 Description 

Specializes QSET. 

Specifies a QSET as an enumeration of simple values. This is a shortcut form for specifying the same values 
as singleton intervals. 

7.10.7.2 ISO/IEC 11404 syntax 

 type QSS (T : QTY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   terms : Set(T) 

) 

7.10.7.3 Attributes 

7.10.7.3.1 terms : Set(T): a list of values that are in the set. The set is actually constructed as the union of 
the intervals implied by the precision implicit in the definition of T. For some types of QTY, this is either trivial 
(INT) or ambiguous (RTO) and QSS doesn‘t really make sense for these type. QSS is a useful type for TS in 
particular. 

7.10.7.4 Invariants 

 a nonNull QSS may only contain nonNull values; 

 at least 1 value must be specified. 



ISO/FDIS 21090:2009(E) 

126 © ISO 2009 – All rights reserved 

 

OCL for invariants: 

  inv "not null": isNotNull implies terms->forAll(t |  

  t.isNotNull) 

  inv "size": isNotNull implies terms->size >= 1 

7.10.7.5 Examples 

<example xsi:type='QSS_TS'> 

   <term value='20071101'/> 

   <term value='20071106'/> 

</example> 

The union of the intervals that cover the 1st November 2007 and the 6th November 2007. 

7.10.8 QSC (coded QSET) 

7.10.8.1 Description 

Specializes QSET. 

Specifies a QSET as an coded value that describes a predefined QSET(TS). 

7.10.8.2 ISO/IEC 11404 syntax 

 type QSC (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   code : CD.CV 

) 

7.10.8.3 Attributes 

7.10.8.3.1 code : CD.CV: a predefined code that fully and unambiguously describes a set of times. 

The possible set of codes that are allowed for use in this attribute should be described in conformance 
statements. HL7 defines the set of codes described below in GTSAbbrevation, and all information processing 
entities claiming direct conformance to this standard shall support the codes AM, PM, BID, TID, QID, JB and 
JE if this type is supported. 

Code System GTSAbbreviation. OID: 2.16.840.1.113883.5.1022 (Required Codes, OID for 
this value set 2.16.840.1.113883.1.11.10720) 

1  AM Every morning at institution specified times.  

1    PM Every afternoon at institution specified times.  

1  BID Two times a day at institution specified time. 

1  TID Three times a day at institution specified time. 

1  QID Four times a day at institution specified time. 

1  JB Regular business days (Monday to Friday excluding holidays).  

1  JE Regular weekends (Saturday and Sunday excluding holidays).  



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 127 
 

In addition to the core codes described above, HL7 has also defined additional codes for the designated 
official or unofficial holidays of source countries: 

Code System GTSAbbreviation. OID: 2.16.840.1.113883.5.1022 (Additional Holiday Codes, 
OID for this value set 2.16.840.1.113883.1.11.10725) 

1  JH Holidays  

2    JHCHR Christian Holidays (Roman/Gregorian "Western" Tradition.) 

3      JHCHRXME Christmas Eve (December 24)  

3      JHCHRXMS Christmas Day (December 25) 

3      JHCHRNEW New Year's Day (January 1)  

3      JHCHREAS 

Easter Sunday. The Easter date is a rather complex calculation 
based on astronomical tables describing full moon dates. Details 
can be found at [http://www.assa.org.au/edm.html, and 
http://aa.usno.navy.mil/AA/faq/docs/easter.html]. The Christian 
Orthodox Holidays are based on the Julian calendar.  

3      JHCHRGFR Good Friday, is the Friday immediately before Easter Sunday 

3      JHCHRPEN 
Pentecost Sunday, is seven weeks after Easter (the 50th day of 
Easter).  

2    JHNUS 
United States National Holidays (public holidays for federal 
employees established by U.S. Federal law 5 U.S.C. 6103.)  

3      JHNUSMLK Dr. Martin Luther King, Jr. Day, the third Monday in January.  

3      JHNUSPRE 
Washington's Birthday (Presidential Day) the third Monday in 
February 

3      JHNUSMEM Memorial Day, the last Monday in May 

3      JHNUSMEM5 Friday before Memorial Day Weekend 

3      JHNUSMEM6 Saturday of Memorial Day Weekend 

3      JHNUSIND Independence Day (4th of July)  

3      JHNUSIND5 Alternative Friday before 4th of July Weekend [5 U.S.C. 6103(b)]. 

3      JHNUSIND1 Alternative Monday after 4th of July Weekend [5 U.S.C. 6103(b)]. 

3      JHNUSLBR Labor Day, the first Monday in September. 

3      JHNUSCLM Columbus Day, the second Monday in October.  

3      JHNUSVET Veteran's Day, November 11 

3      JHNUSTKS Thanksgiving Day, the fourth Thursday in November 

3      JHNUSTKS5 Friday after Thanksgiving 

2    JHNNL The Netherlands National Holidays 

3      JHNNLQD Queen's day (April 30) 

3      JHNNLLD Liberation day (May 5 every five years) 

3      JHNNLSK Sinterklaas (December 5) 

NOTE 1 This table is not complete, nor does it include religious holidays other than Christian [of the Gregorian 

(Western) tradition] or national holidays in countries other than those of the U.S.A. and the Netherlands. While other 
jurisdictions might define their own code systems, they are welcome to submit their codes to HL7 and or ISO for inclusion 
in this code system. 

NOTE 2 Holidays are locale-specific. Exactly which religious holidays are subsumed under JH depends on the locale 

and other tradition. For global interoperability, using constructed QSET expressions is safer than named holidays. 



ISO/FDIS 21090:2009(E) 

128 © ISO 2009 – All rights reserved 

 

However, some holidays that depend on moon phases (e.g., Easter, Ramadan) or ad-hoc decree cannot be easily 
expressed in a QSET other than by using QSC. 

NOTE 3 Information processing entities might define their own set of codes to be supported by creating an appropriate 

value set. The value set can be referenced in the QSC code if required. 

7.10.8.4 Invariants 

 a code must be provided. 

OCL for invariants: 

  inv "not null": isNotNull implies code.isNotNull 

7.10.8.5 Examples 

<example xsi:type='QSC_TS' > 

  <code code="JHCHRXMS" codeSystem="2.16.840.1.113883.5.1022"/> 

</example> 

All Christmas days. 

7.10.9 IVL (interval) 

7.10.9.1 Description 

Specializes QSET. 

Parameter: T : QTY. 

A set of consecutive values of an ordered base datatype. 

Any ordered type can be the basis of an IVL; it does not matter whether the base type is discrete or 
continuous. If the base datatype is only partially ordered, all elements of the IVL shall be elements of a totally 
ordered subset of the partially ordered datatype. For example, PQ is considered ordered. However the 
ordering of PQs is only partial; a total order is only defined among comparable quantities (quantities of the 
same physical dimension). While IVLs between 2 m and 4 m exist, there is no IVL between 2 m and 4 s. 

7.10.9.2 ISO/IEC 11404 syntax 

 type IVL (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   low : T, 

   lowClosed : boolean, 

   high : T, 

   highClosed : boolean, 

   width : QTY, 

   any : T 

 ) 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 129 
 

7.10.9.3 Attributes 

7.10.9.3.1 low : T: This is the low limit. If the low limit is not known, a nullFlavor may be specified. 

The low limit shall not be positive infinity. 

7.10.9.3.2 lowClosed : Boolean: Whether low is included in the IVL (is closed) or excluded from the IVL (is 
open). 

7.10.9.3.3 high : T: This is the high limit. If the high limit is not known, a nullFlavor may be specified. 

The high limit shall not be negative infinity, and shall be higher than the low limit if one exists. 

7.10.9.3.4 highClosed : Boolean: Whether high is included in the IVL (is closed) or excluded from the IVL 
(is open). 

7.10.9.3.5 width : QTY: The difference between high and low boundary. Width is used when the size of the 
Interval is known, but the actual start and end points are not known. The actual type QTY will be dictated by 
the type of T. 

7.10.9.3.6 any : T: Specifies that some particular value lies within the interval. 

This should be used when it is not known when something started, or will end, but it is known that it was 
happening at a given time. This is relatively common for observations (i.e. of disease processes), procedure, 
and scheduling. In these cases, neither high nor low is known, though the width may also be known. 

7.10.9.4 Equality 

Unlike other QSET specializations, IVL equality is determined based on set membership. Two IVL values are 
equal if they contain the same members. 

NOTE 1 For IVLs, there are two special cases. Highs are considered equal if they are both positive infinity, and lows 

are considered equal if they are both negative infinity. 

NOTE 2 If two intervals have the same width and the bounds are not known, they are not considered equal. 

NOTE 3 The same applies where the interval is known by a contained value (any): such intervals are never considered 
equal. 

NOTE 4 Because equality is determined by set membership, it is possible for DSET(INT) and IVL(INT) to be equal. For 
example, the DSET(INT) 2,3,4 is equal to the IVL(INT) 2..4. 

7.10.9.5 Invariants 

 either the IVL is nullFlavored, has a width, ANY, or has (low and/or high). (ANY and/or width) and 
(low and/or high) cannot be mixed; 

 lowClosed and highClosed can only be used if low or high are used; 

 low and high must be comparable. 

OCL for Invariants: 

  def: let hasBounds : Boolean = low.isNotNull or high.isNotNull 

  def: let noSemantics : Boolean = (low.oclIsUndefined or  

      low.noSemantics) and (width.oclIsUndefined or  

      width.noSemantics) and (high.oclIsUndefined or  



ISO/FDIS 21090:2009(E) 

130 © ISO 2009 – All rights reserved 

 

      high.noSemantics)   

 

  inv "null rules": isNonNull implies (hasBounds or any_.isNotNull  

       or width.isNotNull) 

  inv "co-occurence rules": isNotNull implies ((any_.isNotNull  

       or width.isNotNull) xor hasBounds) 

  inv "closed attributes only if limited":  

    (not low.isNotNull implies lowClosed.oclIsUndefined) and  

    (not high.isNotNull implies highClosed.oclIsUndefined) 

  inv "no updateMode or History on IVL attributes":  

             noUpdateOrHistory(low) and 

             noUpdateOrHistory(high) and noUpdateOrHistory(width) 

  inv "comparable": (low.isNotNull and high.IsNotNull) implies  

             low.comparable(high)  

 

7.10.9.6 Examples 

7.10.9.6.1 Integer interval 

<example xsi:type='IVL_INT'> 

   <low value='2'/> 

   <high value='4'/> 

</example> 

A simple interval of INT between 2 and 4. This is exactly the same set of values as specifying the DSET 
(2,3,4) 

7.10.9.6.2 Physical quantity interval 

<example xsi:type='IVL_PQ' lowClosed='true' highClosed='false'> 

   <low value='2.8' unit='m'/> 

   <high value='4.6' unit='m'/> 

</example> 

An interval of PQ between 2.8 meters, inclusive, and 4.6 meters, exclusive. 

7.10.9.6.3 Timestamp interval 

<example xsi:type='IVL_TS'> 

   <low value='200012041000'/> 

   <high value='200012041030'/> 

</example> 

An interval of TS on December 4, 2000, between 10:00 am and 10:30 am. 

7.10.9.6.4 Operation record 

<example xsi:type='IVL_TS'> 

   <width xsi:type='PQ' value='2' unit='h'/> 

   <any value='200012041000'/> 

</example> 

The operation took 2 h, and was occurring at 10 am on the December 4 2000. Width requires an xsi:type 
since its type is abstract (QTY) 

7.10.10 IVL.LOW 

7.10.10.1 Description 

A flavour that constrains IVL. 

IVL.LOW constrains IVL so that low is provided and lowClosed is true. All other properties are prohibited. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 131 
 

7.10.10.2 Invariants 

 low and lowClosed must be populated; 

 high and highClosed must be null. 

OCL for Invariants: 

  inv "low": isNotNull implies low.isNotNull and lowClosed 

  inv "high": high.oclIsUndefined and highClosed.oclIsUndefined 

 

7.10.11 IVL.HIGH 

7.10.11.1 Description 

A flavour that constrains IVL. 

IVL.HIGH constrains IVL so that high is provided and highClosed is true. All other properties are prohibited. 

7.10.11.2 Invariants 

 low and lowClosed must be null; 

 high and highClosed must be populated. 

OCL for Invariants: 

  inv "high": isNotNull implies high.isNotNull and highClosed 

  inv "low": low.oclIsUndefined and lowClosed.oclIsUndefined 

7.10.12 IVL.WIDTH 

7.10.12.1 Description 

A flavour that constrains IVL. 

IVL.WIDTH constrains IVL so that width is mandatory and low, lowClosed, high and highClosed are prohibited. 

7.10.12.2 Invariants 

 width must be populated; 

 low and lowClosed must be null; 

 high and highClosed must be null. 

OCL for Invariants: 

  inv "width": isNotNull implies width.isNotNull 

  inv "low": low.oclIsUndefined and lowClosed.oclIsUndefined 

  inv "high": high.oclIsUndefined and highClosed.oclIsUndefined 



ISO/FDIS 21090:2009(E) 

132 © ISO 2009 – All rights reserved 

 

7.10.13 PIVL (PeriodicInterval) 

7.10.13.1 Description 

Specializes QSET. 

An interval of time that recurs periodically. PIVL has two properties, phase and period/frequency. phase 
specifies the "interval prototype" that is repeated on the period/frequency. 

7.10.13.2 ISO/IEC 11404 syntax 

 type PIVL (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   phase : IVL(TS), 

   period : PQ, 

   frequency : RTO, 

   alignment : CalendarCycle, 

   isFlexible : boolean, 

   count : INT.POS 

 ) 

7.10.13.3 Attributes 

7.10.13.3.1 phase : IVL(TS): A prototype of the repeating interval, specifying the duration of each occurrence 
and anchors the PIVL sequence at a certain point in time. phase also marks the anchor point in time for the 
entire series of periodically recurring intervals. If count is null or nullFlavored, the recurrence of a PIVL has no 
beginning or ending, but is infinite in both future and past. 

The width of the phase shall be less than or equal to the period. 

7.10.13.3.2 period : PQ: A time duration specified as a reciprocal measure of the frequency at which the 
PIVL repeats. 

7.10.13.3.3 frequency : RTO: The number of times the PIVL repeats (numerator) within a specified time-
period (denominator). The numerator is an integer, and the denominator is a PQ.TIME. 

Only one of period and frequency should be specified. The form chosen should be the form that most naturally 
conveys the idea to humans, i.e. every 10 min (period) or twice a day (frequency). 

7.10.13.3.4 alignment : CalendarCycle: If and how the repetitions are aligned to the cycles of the underlying 
calendar (e.g., to distinguish every 30 d from "the 5th of every month".) A non-aligned PIVL recurs 
independently from the calendar. An aligned PIVL is synchronized with the calendar. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 133 
 

If populated, the value of this attribute shall be taken from the HL7 CalendarCycle code system. The current 
values are: 

CalendarCycle Enumeration. OID: 2.16.840.1.113883.5.9 

1  CY year   

1  MY month of the year   

1  CM month (continuous)   

1  CW week (continuous)   

1  WM week of the month  

1  WY week of the year   

1  DM day of the month   

1  CD day (continuous)   

1  DY day of the year   

1  DW day of the week 
(begins with monday)  

 

1  HD hour of the day   

1  CH hour (continuous)   

1  NH minute of the hour   

1  CN minute (continuous)   

1  SN second of the minute   

1  CS second (continuous)   

ISO/IEC 11404 Syntax for alignment attribute 

 type CalendarCycle = enumeration (CY, MY, CM, CW, WY, DM, CD, DY, DW, 

HD, CH, NH, CN, SN, CS) 

 

7.10.13.3.5 isFlexible : Boolean: Indicates whether the exact timing is up to the party executing the schedule 
e.g., to distinguish "every 8 h" from "3 times a day". 

NOTE This is sometimes referred to as "institution specified timing". 

7.10.13.3.6 count : INT.POS: The number of times the period repeats in total. If count is null or nullFlavored, 
then the period repeats indefinitely both before and after the anchor implicit in the phase. 

7.10.13.4 Invariants 

 if PIVL is not nullFlavored, only one of period and frequency may be specified; 

 the width of the phase shall be less or equal to the period. 

OCL for invariants: 

  inv "no updateMode or History on PIVL attributes": 

 noUpdateOrHistory(phase)and noUpdateOrHistory(period) 

  inv "no updateMode or History on PIVL attributes":  

 noUpdateOrHistory(phase) and noUpdateOrHistory(period) 

        inv "phase width": isNotNull implies  

          ((phase.isNotNull implies phase.width < x.period) or  



ISO/FDIS 21090:2009(E) 

134 © ISO 2009 – All rights reserved 

 

          (frequency.isNotNull implies phase.width <  

                 (frequency.denominator / frequency.numerator))) 

7.10.13.5 Examples 

7.10.13.5.1 Twice a day 

<example xsi:type='PIVL_TS' isFlexible='true'> 

   <period value='12' unit='h'/> 

</example> 

Twice a day (BID). The actual time is at the discretion of the institution. 

This can also be represented using the alternative representation by frequency: 

<example xsi:type='PIVL_TS' isFlexible='true'> 

   <frequency> 

     <numerator xsi:type="INT" value='2'/> 

     <denominator xsi:type="PQ" value="1" unit='d'/> 

   </frequency> 

</example> 

This also represents twice a day (BID). In simple cases such as twice a day, the two forms are easily 
interconvertable, and humans find either form acceptable. While it is always possible to convert between 
period and frequency, human readers have a strong preference for one form or another depending on the 
actual numbers: 

<example xsi:type='PIVL_TS' isFlexible='true'> 

   <frequency> 

     <numerator xsi:type="INT" value='7'/> 

     <denominator xsi:type="PQ" value="1" unit='d'/> 

   </frequency> 

</example> 

This means to do something seven times a day. The period based reference to this is not so nice to read: 

<example xsi:type='PIVL_TS' isFlexible='true'> 

   <period value='3.4285714285714285714285714285714' unit='h'/> 

</example> 

While this example may seem contrived, examples like this arise in clinical practice around the world. 

7.10.13.5.2 Twice a day for ten minutes  

<example xsi:type='PIVL_TS'> 

   <phase> 

      <width xsi:type="PQ" value='10' unit='min'/> 

   </phase> 

   <period value='12' unit='h'/> 

</example> 

Twice a day (every 12 h) for 10 min. 

7.10.13.5.3 Every September  

<example xsi:type='PIVL_TS' alignment='MY'> 

   <phase highClosed='true' lowClosed='false'> 

      <low value='198709'/> 

      <high value='198710'/> 

   </phase> 

   <period value='1' unit='a'/> <!—- a means year in UCUM --> 

</example> 

This example is slightly more complex and shows the month of September that recurs every year (In 1987 this 
form is irrelevant since the periodic interval recurs every year past and future.) 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 135 
 

7.10.13.5.4 Every other Saturday.  

<example xsi:type='PIVL_TS' alignment='DW'> 

   <phase highClosed='true' lowClosed='false'> 

      <low value='20001202' /> 

      <high value='20001203' /> 

   </phase> 

   <period value='2' unit='wk'/> 

</example> 

7.10.13.5.5 Every 4 h to 6 h. 

<example xsi:type='PIVL_TS'> 

   <period value='5' unit='h' uncertaintyType='U'> 

      <uncertainty value='0.57735' unit='h'/> 

   </period> 

</example> 

7.10.14 EIVL (Event-Related Periodic Interval of Time) 

7.10.14.1 Description 

Specializes QSET. 

Specifies a periodic interval of time where the recurrence is based on activities of daily living or other 
important events that are time-related but not fully determined by time.  

Example: "one hour after breakfast" specifies the beginning of the interval at one hour after breakfast is finished. Breakfast 

is assumed to occur before lunch but is not determined to occur at any specific time. 

7.10.14.2 ISO/IEC 11404 syntax 

 type EIVL = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   originalText : ED.TEXT, 

   event : TimingEvent, 

   offset : IVL(PQ) 

 ) 

7.10.14.3 Attributes 

7.10.14.3.1 event : TimingEvent: A code for a common (periodic) activity of daily living based on which the 
event-related periodic interval is specified. Events that qualify for being adopted in the domain of this attribute 
must satisfy the following requirements: 

 the event commonly occurs on a regular basis; 

 the event is being used for timing activities; 

 the event is not entirely determined by time. 

If these criteria are not met, the relationship of the event and its time must be communicated using structures 
outside the datatypes defined in this International Standard. 



ISO/FDIS 21090:2009(E) 

136 © ISO 2009 – All rights reserved 

 

If populated, the value of this attribute shall be taken from the HL7 TimingEvent code system. The current 
values are: 

TimingEvent Enumeration. OID: 2.16.840.1.113883.5.139 

1  HS the hour of sleep 

1   WAKE upon waking 

1  AC before a meal (from the latin ante cibus) 

2   ACM before breakfast (from the latin ante cibus matutinus) 

2    ACD before lunch (from the latin ante cibus diurnus) 

2    ACV before dinner (from the latin ante cibus vespertinus) 

1  IC between meals (from the latin inter cibus) 

2    ICM between breakfast and lunch 

2    ICD between lunch and dinner 

2    ICV between dinner and the hour of sleep 

1  PC after a meal (from the latin post cibus) 

2    PCM after breakfast (from the latin post cibus matutinus) 

2    PCD after lunch (from the latin post cibus diurnus) 

2    PCV after dinner (from the latin post cibus vespertinus) 

1  C meal (from the latin cibus) 

2    CM breakfast (from the latin cibus matutinus) 

2    CD lunch (from the latin cibus diurnus) 

2    CV dinner (from the latin cibus vespertinus) 

ISO/IEC 11404 Syntax for event attribute 

 type TimingEvent = enumeration (HS, WAKE, AC, ACM, ACD, ACV, IC, ICM, ICD, 

ICV, PC, PCM, PCD, PCV, C, CM, CD, CV) 

 

7.10.14.3.2 offset : IVL(PQ): An interval of elapsed time (duration, not absolute point in time) that marks the 
offsets for the beginning, width and end of the EIVL measured from the time each such event actually 
occurred. 

EXAMPLE:  if the specification is "one hour before breakfast for 10 minutes", code is CM, IVL.low of offset is 1 h 

and the IVL.high of offset is 50 min. 

The offset shall be null if the event code specifies "before", "after" or "between meals". The offset shall be 
nonNull if the EIVL is nonNull and the event code is C, CM, CD or CV. The offset may or may not be null or 
nullFlavored for the event codes HS and WAKE. 

7.10.14.4 Invariants 

 if EIVL is not nullFlavored, event must be specified. 

OCL for invariants: 

  inv "required attributes": isNotNull implies  

 (event.oclIsDefined) 

  inv "no updateMode or History on EIVL attributes":  

  noUpdateOrHistory(offset) 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 137 
 

 

7.10.14.5 Examples 

<example xsi:type='EIVL_TS' event='CM'> 

   <offset> 

      <low value='-1' unit='h'/> 

      <high value='-50' unit='min'/> 

   </offset> 

</example> 

One hour before breakfast for 10 min. 

Example 75 

<example xsi:type='EIVL_TS' event='CV'> 

   <offset> 

      <low value='30' unit='min'/> 

      <high value='30' unit='min'/> 

   </offset> 

</example> 

Thirty minutes after dinner. 

7.10.15 GTS.BOUNDEDPIVL 

7.10.15.1 Description 

A flavour that constrains QSI. 

GTS.BOUNDEDPIVL constrains QSI(TS) so that it only allows an intersection of IVL(TS)  and PIVL(TS). 

7.10.15.2 Invariants 

 there shall be two terms; 

 one term shall be an IVL(TS); 

 the other term shall be a PIVL(TS); 

 the IVL width shall be null (i.e. either a low or high or both must be provided). 

OCL for Invariants: 

  inv "GTS.BOUNDEDPIVL 1": terms->size = 2 

  inv "GTS.BoundedPIVL 2": terms.item->exists(t |  

      t.oclIsKindOf(IVL(TS))) 

  inv "GTS.BoundedPIVL 3": terms.item->exists(t |  

      t.oclIsKindOf(PIVL(TS))) 

7.11 Uncertainty Datatypes 

These datatypes provide support for uncertain values. The support provided here, along with the support 
provided for uncertainty on QTY, provides support for quantitative uncertainty, not with the medical kinds of 
uncertainty encountered in clinical practice such as ―likely to be x‖, or a differential diagnoses. See Figure 12. 



ISO/FDIS 21090:2009(E) 

138 © ISO 2009 – All rights reserved 

 

 

Figure 12 — Uncertainty datatypes 

7.11.1 UVP (Uncertain value – probabilistic) 

7.11.1.1 Description 

Specializes ANY. 

Parameter: T : ANY. 

A generic datatype extension used to specify a probability expressing the information producer's belief that the 
given value holds. 

7.11.1.2 ISO/IEC 11404 syntax 

 type UVP (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   probability : Decimal, 

   value : T 

 ) 

7.11.1.3 Attributes 

7.11.1.3.1 probability : Decimal: The probability assigned to the value, a decimal number between 0 
(impossible) and 1 (certain), inclusive. 

There is no "default probability" that one can assume when the probability is unstated. Therefore, it is 
impossible to make any semantic difference between a UVP without probability and a simple T. UVP does not 
mean "uncertain", and a simple T does not mean "certain". In fact, the probability of the UVP could be 0,999 
or 1, which is quite certain, where a simple T value could be a very vague guess. 

7.11.1.3.2 value : T: The value of T to which the probability refers. 

7.11.1.4 Equality 

Two nonNull UVP values are equal if their probability and value are equal. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 139 
 

7.11.1.5 Invariants 

 a value shall be provided; 

 a probability shall be provided; 

 probability shall be between 0 and 1. 

OCL for Invariants: 

  Inv "value not null": isNotNull implies value.isNotNull 

  inv "must have probability": isNotNull implies  

       (probability.oclIsDefined and probability >= 0  

       and probability <= 1) 

  inv "No History or Update Mode": noUpdateOrHistory(probability) 

       and noUpdateOrHistory(value) 

 

7.11.2 NPPD (Non-parametric probability distribution) 

7.11.2.1 Description 

Specializes ANY. 

Parameter: T : ANY. 

A set of UVP with probabilities (also known as a histogram.) All the elements in the set are considered 
alternatives and are rated each with its probability expressing the belief (or frequency) that each given value 
holds. 

NPPD<T> may be used where only one value for T may be true. The sum of the probabilities should be u 1, 
but due to estimating and rounding inaccuracies, the total may actually exceed 1 

7.11.2.2 ISO/IEC 11404 syntax 

 type NPPD (T : ANY) = class ( 

   validTimeLow : characterstring, 

   validTimeHigh : characterstring, 

   controlInformationRoot : characterstring, 

   controlInformationExtension : characterstring, 

   nullFlavor : NullFlavor, 

   updateMode : UpdateMode, 

   flavorId : Set(characterstring), 

   item : Set(UVP(T)) 

 ) 

7.11.2.3 Attributes 

7.11.2.3.1 item : Set(UVP(T)): The list of values with probabilities for the histogram. 

7.11.2.4 Equality 

Two nonNull NPPDs are equal if they contain the same elements. 

NOTE The determination of element content is based on the same semantic equals as defined in this International 

Standard, so it is possible that a NPPD(CD) can be equal to NPPD(CS), for instance. 



ISO/FDIS 21090:2009(E) 

140 © ISO 2009 – All rights reserved 

 

7.11.2.5 Invariants 

 at least one value must be provided. 

OCL for Invariants: 

  inv "must have at least one item": isNull xor item->notEmpty 

7.11.2.6 Examples 

<example xsi:type='NPPD_ST'> 

  <item probability="0.1"> 

 <value value="Yankees"/> 

  </item> 

  <item probability="0.04"> 

 <value value="Red Sox"/>   

  </item> 

  <item probability="0.05"> 

 <value value="White Sox"/>   

  </item> 

  <item probability="0.08"> 

 <value value="Indians"/>   

  </item> 

  <item probability="0.05"> 

 <value value="Tigers"/>   

  </item> 

  <item probability="0.07"> 

 <value value="Mariners"/>   

  </item> 

  <item probability="0.02"> 

 <value value="Royals"/>   

  </item> 

  <item probability="0.06"> 

 <value value="Orioles"/>   

  </item> 

</example> 

7.12 Structured text 

7.12.1 Overview 

This subclause documents the SD.TEXT and SD.TITLE datatypes. Both SD.TEXT and SD.TITLE contain 
document-like structures. In addition to text, the content may contain multi-media content, lists, tables, 
formatting, presentation and referencing information. See Figure 13. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 141 
 

 

Figure 13 — Structured text model 

These structures are not intended to be complete documents. They are building blocks that are intended to be 
integrated into a larger context with other classes that use these document formats and other datatypes to 
build a complete document that is useful for clinical or other healthcare use. However these document formats 
may also find a use inside other record and messages formats. Whether documents, records or messages, 
these documents will be created within a single context. This document context may contain multiple 
documents of the type defined in this section, and these structures may refer to any content within this single 
document context. 

Any Information Processing Entity claiming direct or indirect conformance to this International Standard that 
supports the use of the document formats defined in this International Standard shall document the scope of 
the context and clearly define how references within the document context are resolved. 



ISO/FDIS 21090:2009(E) 

142 © ISO 2009 – All rights reserved 

 

There is special support in this subclause for relating content changes to previous versions of the content. If it 
is supported, the conformance statement shall make it clear how the applicable version information is made 
available and integrated with the change control content. 

These documents are intended to be "rendered". A document is rendered when it is prepared for human 
consumption, either on a computer screen or a printed report or by some other method. However if the 
document is rendered, the rules described in this subclause shall be followed. 

These document-like structures display obvious similarity to XHTML, and have a degree of functional overlap 
with XHTML. However these structures have some very basic conceptual differences to XHTML, particularly 
to do with how these structures integrate with their context. The context for XHTML is the world wide web and 
it has features that tightly link it to the http protocol as well, where as these structures are designed for use 
inside an XML document that may contain multiple such structures, and that may have bidirectional links in 
and out of the document. In addition, these structures have some additional functional characteristics, mainly 
those to do with the StrucDoc.Content and RenderMultimedia types. The structures can easily be converted to 
XHTML in a particular context of use. 

Functionally, these structures are similar to the ED datatype, and can be converted to an ED.datatype. Like 
ED, the SD datatypes have xml content, a character set, langauge and nullFlavor. The other properties of ED, 
such as reference, integrity check, thumbnail and translations are fixed to null. 

7.12.2 Example 

<example xsi:type="SD.TEXT"> 

  <paragraph> 

    <caption styleCode="Bold xHead1">Introduction</caption> 

    Thank you for referring this patient for investigation 

    into <content ID="c1">burnt ears</content>.  

  </paragraph> 

  <list> 

    <caption styleCode="Bold xHead1">Initial Observations</caption> 

    <item>The patient presented in a very confused state.</item> 

    <item> 

       There was extensive damage to the outer ears: 

       <renderMultiMedia referencedObject="i1"> 

         <caption>Photo of left ear</caption> 

       </renderMultiMedia> 

    </item> 

  </list> 

  <table summary="Investigations performed"  border="all" rules="all"> 

   <caption styleCode="Bold xHead1">Investigations</caption> 

    <thead> 

      <tr> 

        <th>Investigation</th><th>Finding</th> 

      </tr> 

    </thead> 

    <tbody> 

      <tr> 

        <th><content ID="c2">Skin Condition</content></th> 

        <th><content ID="c3">1<sup>st</sup> degree burns</content></th> 

      </tr> 

      <tr> 

        <th><content ID="c4">Hearing Test</content></th> 

        <th><content ID="c5">The patients hearing is okay</content></th> 

      </tr> 

    </tbody> 

  </table> 

  <paragraph> 

    <caption styleCode="Bold xHead1">Recommendations</caption> 

   The patient should apply a cream to the outer ears until 

   they are healed. <content revised="insert">The patient  

   should wear a woollen balaclava in the future while ironing  

   his shirts to prevent a re-occurence of the accident<footnote>This  

   has been proven to offer the best protection against a repeat  



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 143 
 

   injury. See <linkHtml href="http://www.wikipedia.org/wiki/burnt_ears"> 

      the wikipedia article about burnt ears</linkHtml> for further  

   information.</footnote>.</content> 

  </paragraph> 

</example> 

NOTE 1 This narrative has four sections: an introduction, initial observations, a summary of investigations, and 

recommendations. Besides not being a serious example, the context of use of a structured text like this may make specific 
rules about the semantic scope of a particular piece of structured text, thereby narrowing the scope of a particular 

structured text. 

NOTE 2  The styleCode xHead1 is an example of a valid local extension to the style codes. 

NOTE 3 The content element is used to introduce an ID attribute. This is suitable for use in an originalText.reference 
element on a CD or PQ type in other content that refers into the structured text. 

NOTE 4 The final use of the content element shows a revision to the document. 

NOTE 5 There must be some other item with the ID "i1" in the scope of the document context. This should be some 

kind of class that unambiguously provides some multimedia content. 

NOTE 6 While the actual presentation process is outside the Scope of this International Standard, one possible 

presentation of the document would take the form shown in Figure 14. 

 

Figure 14 — Presentation form 

7.12.3 StrucDoc.Base 

7.12.3.1 Description 

Abstract. 

Defines basic identification and styling attributes shared by many structured document elements. 



ISO/FDIS 21090:2009(E) 

144 © ISO 2009 – All rights reserved 

 

7.12.3.2 Attributes 

7.12.3.2.1 ID : String: Unique Identity of this element within a document. 

7.12.3.2.2 language : Code: Language of the element. See 7.4.2.3.7 for more information. Within a 
document, the language applies to all the contained elements unless some other language is specifically 
identified. 

7.12.3.2.3 styleCode : Set(Code): Styles that apply to this document. 

If populated, the value of this attribute shall be taken from one of these values listed below or a valid local 
extension:  

StyleCode Enumeration 

1 Font style (defines font rendering characteristics). 

2 Bold Render with a bold font. 

2 Underline Render with an underlined font. 

2 Italics Render italicized. 

2 Emphasis Render with some type of emphasis. 

1 Table rule style (defines table cell rendering characteristics). 

2 Lrule Render cell with left-sided rule. 

2 Rrule Render cell with right-sided rule. 

2 Toprule Render cell with rule on top. 

2 Botrule Render cell with rule on bottom. 

1 Ordered list style (defines rendering characteristics for ordered lists). 

2 Arabic List is ordered using Arabic numerals: 1, 2, 3. 

2 LittleRoman List is ordered using little Roman numerals: i, ii, iii. 

2 BigRoman List is ordered using big Roman numerals: I, II, III. 

2 LittleAlpha List is ordered using little alpha characters: a, b, c. 

2 BigAlpha List is ordered using big alpha characters: A, B, C. 

1 Unordered list style (defines rendering characteristics for unordered lists). 

2 Disc List bullets are simple solid discs. 

2 Circle List bullets are hollow discs. 

2 Square List bullets are solid squares. 

Local extensions to the styleType enumeration must follow the following convention: [x][A-Za-z][A-Za-z0-9]* 
(first character is "x", second character is an upper or lower case A-Z, remaining characters are any 
combination of upper and lower case letters or numbers). 

7.12.4 StrucDoc.Br 

7.12.4.1 Description 

Definition 

A hard line break, like in XHTML. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 145 
 

7.12.5 StrucDoc.Sup 

7.12.5.1 Description 

Indicates that the value text should be rendered as superscript when presented. i.e. x2. 

7.12.5.2 Attributes 

7.12.5.2.1 text : String «XMLText»: The text that is to be represented as superscript. 

Refer to Clause A.2 for the meaning of the XMLText stereotype. 

7.12.5.3 Invariants 

 text shall not be empty. 

OCL for Invariants: 

  inv "text must not be empty": text.length > 0 

7.12.6 StrucDoc.Sub 

7.12.6.1 Description 

Indicates that the value text should be rendered as subscript when presented. i.e. H2O. 

7.12.6.2 Attributes 

7.12.6.2.1 text : String «XMLText»: The text that is to be represented as subscript. 

Refer to Clause A.2 for the meaning of the XMLText stereotype. 

7.12.6.3 Invariants 

 text shall not be empty. 

OCL for Invariants: 

  inv "text must not be empty": text.length > 0 

7.12.7 StrucDoc.LinkHtml 

7.12.7.1 Description 

Specializes StrucDoc.Base. 

A hypertext reference to another document. These links are generally shown as hyperlinks that a user may 
activate when viewing the document. 

The link functionality provides a generic referencing mechanism, similar, but not identical, to the HTML anchor 
tag. It can be used to reference identifiers that are either internal or external to the document or the document 
context. 

Multimedia that is integral to a document shall be referenced by the renderMultiMedia element. Multimedia 
that is simply referenced by the document and not an integral part of the document can be provided by a link. 
There is no requirement that a receiver render an internal or external link, or the target of an external link. 



ISO/FDIS 21090:2009(E) 

146 © ISO 2009 – All rights reserved 

 

7.12.7.2 Attributes 

7.12.7.2.1 href : String: The URL that identifiers the target documen/object of the link. The target is an XML 
identifier either internal or external to the document.The context of use must clearly define the scope of 
resolution of the link. Following the conventions of HTML, an internal link – usually a link within the scope of 
the context of the document – is prefaced with the pound sign. 

7.12.7.2.2 rel : Set(StrucDoc.LinkType): This attribute describes the relationship from the current 
document to the anchor specified by the href attribute. The value of this attribute is a space-separated list of 
link types. 

If populated, the value of this attribute shall be taken from one of these values listed below: 

LinkType Enumeration 

1 Alternate 
Designates substitute versions for the document in which the link 
occurs. 

1 Stylesheet 
Refers to an external style sheet. This is used together with the 
link type "Alternate" for user-selectable alternate style sheets. 

1 Start Refers to the first document in a collection of documents.  

1 Next 
Refers to the next document in a linear sequence of documents. 
User agents may choose to preload the "next" document, to 
reduce the perceived load time. 

1 Prev 

Refers to the previous document in an ordered series of 
documents. Some user agents also support the synonym 
"Previous". 

1 Contents 
Refers to a document serving as a table of contents. Some user 
agents also support the synonym ToC (from "Table of Contents"). 

1 Index Refers to a document providing an index for the current document. 

1 Glossary 
Refers to a document providing a glossary of terms that pertain to 
the current document. 

1 Copyright Refers to a copyright statement for the current document. 

1 Chapter 
Refers to a document serving as a chapter in a collection of 
documents. 

1 Section 
Refers to a document serving as a section in a collection of 
documents. 

1 Subsection 
Refers to a document serving as a subsection in a collection of 
documents. 

1 Appendix 
Refers to a document serving as an appendix in a collection of 
documents. 

1 Help 
Refers to a document offering help (more information, links to 
other sources information, etc.). 

1 Bookmark 

Refers to a bookmark. A bookmark is a link to a key entry point 
within an extended document. The title attribute may be used, for 
example, to label the bookmark. Several bookmarks may be 
defined in each document 

This list is taken from the HTML specification. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 147 
 

7.12.7.2.3 rev : Set(StrucDoc.LinkType): This attribute is used to describe a reverse link from the anchor 
specified by the href attribute to the current document. The value of this attribute is a space-separated list of 
link types. See 7.12.7.2.2 for valid values. 

7.12.7.2.4 title : String: This attribute offers advisory information about the element for which it is set. The 
title attribute has an additional role when used with a LINK element that designates an external style sheet. 
Please consult the HTML standard for additional information. 

NOTE Values of the title attribute can be rendered by user agents in a variety of ways. For instance, visual browsers 

frequently display the title as a "tool tip" (a short message that appears when the pointing device pauses over an object). 
Audio user agents can speak the title information in a similar context. For example, setting the attribute on a link allows 

user agents (visual and non-visual) to tell users about the nature of the linked resource: 

7.12.7.3 Associations 

7.12.7.3.1 parts: CMFootnotes [0..* ordered] «Anonymous»: The content (text and footnotes) that 
represent the text with which the activatable link is associated. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.7.4 Invariants 

 some text shall be associated with the link. 

OCL for Invariants: 

  inv "must have at least one item": parts->notEmpty 

7.12.7.5 Example 

   <text>History of coronary artery disease, as noted  

      <linkHtml href="#SECT001">above</linkHtml>. 

   </text> 

An explicit reference. In this example, the reference is to a CDA section with the id "SECT001": 

<section ID="SECT003"> 

   <code code="10153-2" codeSystem="2.16.840.1.113883.6.1" 

      codeSystemName="LOINC"/> 

   <title>Past Medical History</title> 

</section> 

7.12.8 StrucDoc.RenderMultiMedia 

7.12.8.1 Description 

Specializes StrucDoc.Base. 

References multimedia content that is integral to the document, and serves to show where the referenced 
multimedia are to be rendered. The multimedia content must be contained within the context of the document. 

There is an optional caption and it contains a required referencedObject attribute (of type XML IDREFS), the 
values of which shall equal the XML ID value(s) of ObservationMedia or RegionOfInterest CDA entries within 
the document context. 



ISO/FDIS 21090:2009(E) 

148 © ISO 2009 – All rights reserved 

 

7.12.8.2 Attributes 

7.12.8.2.1 caption : StrucDoc.Caption: An optional caption for the multimedia content. 

7.12.8.2.2 referencedObject : Set(String) «XMLIDREF» : The references are to other identified objects 
within the document context. 

Refer to Clause A.2 for the meaning of the XMLIDREF stereotype. 

7.12.8.3 Invariants 

 at least one reference shall be provided. 

OCL for Invariants: 

  inv "must have at least one ref": referencedObject->size() > 0 

7.12.9 StrucDoc.FootnoteRef 

7.12.9.1 Description 

Specializes StrucDoc.Base. 

A reference to an existing footnote within the document context. This may be used when the same footnote is 
being used multiple times. The value of the footnoteRef.IDREF must be an footnote.ID value in the same 
document. 

7.12.9.2 Attributes 

7.12.9.2.1 IDREF: String «XMLIDREF»: The identity of the referenced footnote. 

Refer to Clause A.2 for the meaning of the XMLIDREF stereotype. 

7.12.9.3 Invariants 

 a reference shall be provided. 

OCL for Invariants: 

  inv "must have a reference": IDREF.oclIsDefined 

7.12.10 StrucDoc.Footnote 

7.12.10.1 Description 

Specializes StrucDoc.Base. 

Indicates a footnote. The content contained within the Footnote is the content of the footnote. When the 
document is rendered, a link to the footnote is displayed in line with the flow of text adjacent to the footnote. 

Receivers are required to interpret these elements when rendering, by visually distinguishing footnoted text. 
The exact rendition is at the discretion of the recipient, and might include a mark at the location of the footnote 
with a hyperlink to the footnoted text, a simple demarcation [such as "This is the text (this is the footnote) that 
is being footnoted"], etc. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 149 
 

7.12.10.2 Associations 

7.12.10.2.1 parts : StrucDoc.CMGeneral[0..* ordered] «Anonymous»: The contents of the footnote. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.10.3 Invariants 

 the footnote must contain some content; 

 footnotes cannot contain nested footnotes. 

OCL for Invariants: 

  inv "Some content required": parts->notEmpty 

  inv "no nested footnotes": parts->forAll(t | 

     t.footnote.oclIsUndefined and t.footnoteRef.oclIsUndefined) 

7.12.11 StrucDoc.TitleFootnote 

7.12.11.1.1 Description 

Specializes StrucDoc.Base. 

Same functionality as a normal footnote, but the content model in the parts is restricted to the kind of content 
that can appear in a title. 

7.12.11.2 Associations 

7.12.11.2.1 parts : StrucDoc.CMTitle[0..* ordered] «Anonymous»: The contents of the footnote. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.11.3 Invariants 

 the footnote shall contain some content. 

OCL for Invariants: 

  inv "Some content required": parts->notEmpty 

7.12.12 StrucDoc.Content 

7.12.12.1 Description 

Specializes StrucDoc.Base. 

Used to wrap a string of text so that it can be explicitly referenced, or so that it can suggest rendering 
characteristics. Content can be nested recursively, which enables wrapping a string of plain text down to as 
small a chunk as desired. 

Content has an optional identifier that can serve as the target of a reference. This identifier, represented as an 
XML ID attribute, must be unique within the document context. The originalText attribute of a datatype defined 
in this International Standard may make explicit reference to the content using the identifier, thereby indicating 
the original text associated with the datatype. 



ISO/FDIS 21090:2009(E) 

150 © ISO 2009 – All rights reserved 

 

7.12.12.2 Attributes 

7.12.12.2.1 revised: Revised: can be used to indicate narrative changes from the last version of a CDA 
document. The attribute is limited to a single generation, in that it only reflects the changes from the 
preceding version of a document. Receivers shall interpret the "revised" attribute when rendering by visually 
distinguishing or suppressing deleted narrative. 

If applied, this attribute shall be used in conjunction with appropriate document version tracking as defined in 
the applicable conformance statement for the document context. 

If populated, the value of this attribute shall be taken from one of these values: 

StrucDoc.Revised Enumeration 

1 Insert insert This content was inserted in this revision of the document 

1 delete delete This content was deleted in this revision of the document 

7.12.12.3 Associations 

7.12.12.3.1 parts : StrucDoc.CMContent[0..* ordered] «Anonymous»: The contents of the Content. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.12.4 Invariants 

 the content shall contain some content. 

OCL for Invariants: 

  inv "Some content required": parts->notEmpty 

7.12.13 StrucDoc.Caption 

7.12.13.1 Description 

Specializes StrucDoc.Base. 

A label for a paragraph, list, list item, table or table cell. It may also be used within RenderMultiMedia to 
indicate a label for referenced ObservationMedia and RegionOfInterest entries. A Caption contains plain text 
and may contain links and footnotes. 

If a caption is defined, it shall be rendered, and shall be presented before any the element with which it is 
associated. 

7.12.13.2 Associations 

7.12.13.2.1 parts : StrucDoc.CMInline[0..* ordered] «Anonymous»: The contents of the Content. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.13.3 Invariants 

 the caption shall contain some content. 

OCL for Invariants: 

  inv "Some content required": parts->notEmpty 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 151 
 

7.12.14 StrucDoc.Captioned 

7.12.14.1 Description 

Abstract. Specializes StrucDoc.Base. 

An abstract ancestor for all types that have captions. 

If a caption is defined, it shall be rendered, and shall be presented before any the element with which it is 
associated. 

7.12.14.2 Attributes 

7.12.14.2.1 caption : StrucDoc.Caption : The contents of the Content. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.15 StrucDoc.Paragraph 

7.12.15.1 Description 

Specializes StrucDoc.Captioned. 

Similar to the HTML paragraph, which allows blocks of narrative to be broken up into logically consistent 
structures 

7.12.15.2 Associations 

7.12.15.2.1 parts: StrucDoc.CMInline[0..* ordered] «Anonymous»: The contents of the Content. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.15.3 Invariants 

 the caption shall contain some content. 

OCL for Invariants: 

  inv "Some content required": parts->notEmpty 

7.12.16 StrucDoc.CMFootnotes 

7.12.16.1 Description 

Stereotype: «Choice» 

Content model that allows text and footnotes. The choice stereotype denotes that exactly one of the attributes 
shall have a value. All the others shall be null. 

7.12.16.2 Attributes 

7.12.16.2.1 Text : String «XMLText»: Plain text. 

Refer to Clause A.2 for the meaning of the XMLText stereotype. 



ISO/FDIS 21090:2009(E) 

152 © ISO 2009 – All rights reserved 

 

7.12.16.2.2 footnote : StrucDoc.Footnote: A footnote. 

7.12.16.2.3 footnoteRef : StrucDoc.FootnoteRef: A reference to a footnote. 

7.12.17 StrucDoc.CMInline 

7.12.17.1 Description 

Specializes StrucDoc.CMFootnotes. 

Stereotype: «Choice». 

Content model that allows text, footnotes, links, and superscript and subscript text. The choice stereotype 
denotes that exactly one of the attributes (including inherited attributes) shall have a value. All the others must 
be null. 

7.12.17.2 Attributes 

7.12.17.2.1 linkHtml : StrucDoc.LinkHtml: A HTML-type link. 

7.12.17.2.2 sub : StrucDoc.Sub: Subscript text. 

7.12.17.2.3 sup : StrucDoc.Sup: Superscript text. 

7.12.18 StrucDoc.CMContent 

7.12.18.1 Description 

Specializes StrucDoc.CMInline. 

Content model that allows text, footnotes, links, superscript and subscript text, line breaks, multimedia content 
and nested Content items. The choice stereotype denotes that exactly one of the attributes (including inherited 
attributes) shall have a value. All the others shall be null. 

7.12.18.2 Attributes 

7.12.18.2.1 content : StrucDoc.Content: Nested Content. 

7.12.18.2.2 br : StrucDoc.Br: A hard line break. 

7.12.18.2.3 renderMultiMedia : StrucDoc.RenderMultiMedia: Multimedia. 

7.12.19 StrucDoc.CMGeneral 

7.12.19.1 Description 

Specializes StrucDoc.CMContent. 

Content model that allows text, footnotes, links, superscript and subscript text, line breaks, multimedia content, 
nested Content items, paragraphs, lists and tables. The choice stereotype denotes that exactly one of the 
attributes (including inherited attributes) shall have a value. All the others shall be null. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 153 
 

7.12.19.2 Attributes 

7.12.19.2.1 paragraph : StrucDoc.Paragaph: A paragraph of text and other CMContent content. 

7.12.19.2.2 list : StrucDoc.List: List based content. 

7.12.19.2.3 table : StrucDoc.Table: Table. 

7.12.20 StrucDoc.CMTitle 

7.12.20.1 Description 

Stereotype: «Choice». 

Content model that allows text and footnotes, hard line breaks, links, superscript and subscript text and nested 
content sections. Multimedia content is not allowed. The choice stereotype denotes that exactly one of the 
attributes (including inherited attributes) shall have a value. All the others shall be null. 

7.12.20.2 Attributes 

7.12.20.2.1 Text : String «XMLText»: Plain text. 

Refer to Clause A.2 for the meaning of the XMLText stereotype. 

7.12.20.2.2 footnote : StrucDoc.Footnote: A footnote. 

7.12.20.2.3 footnoteRef : StrucDoc.FootnoteRef: A reference to a footnote. 

7.12.20.2.4 br : StrucDoc.Br: A hard line break. 

7.12.20.2.5 linkHtml : StrucDoc.LinkHtml: A HTML-type link. 

7.12.20.2.6 sub : StrucDoc.Sub: Subscript text. 

7.12.20.2.7 sup : StrucDoc.Sup: Superscript text. 

7.12.20.2.8 content : StrucDoc.Content: Nested Content. 

7.12.21 StrucDoc.List 

7.12.21.1 Description 

Specializes StrucDoc.Captioned. 

Similar to an HTML list. There is an optional caption, and one or more items. The list shall be ordered or not 
ordered; this shall always be known. 



ISO/FDIS 21090:2009(E) 

154 © ISO 2009 – All rights reserved 

 

7.12.21.2 Attributes 

7.12.21.2.1 listType : StrucDoc.ListType: Whether the list is ordered or unordered. 

If populated, the value of this attribute SHALL be taken from one of these values:  

StrucDoc.ListType Enumeration 

1 ordered ordered The list is ordered 

1 unordered unordered The list is not ordered 

The default value is unordered. 

NOTE Unordered lists are typically rendered with bullets, whereas ordered lists are typically rendered with numbers, 

although this is not a requirement. 

7.12.21.3 Associations 

7.12.21.3.1 item : StrucDoc.Item[0..* ordered]: Actual list items. 

7.12.21.4 Invariants 

 at least one item must be provided. 

OCL for Invariants: 

  inv "must have at least one item": item->notEmpty 

7.12.22 StrucDoc.Item 

7.12.22.1 Description 

Specializes StrucDoc.Captioned. 

An item in a list. 

7.12.22.2 Associations 

7.12.22.2.1 parts : StrucDoc.CMGeneral[0..* ordered] «Anonymous»: The contents of the footnote. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.23 StrucDoc.TableItem 

7.12.23.1 Description 

Abstract. Specializes StrucDoc.Base. 

An abstract container for table items that may specify table layout details such as alignment. 

Any attributes applied to the table item also apply to any other nested table items unless specifically 
overridden. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 155 
 

7.12.23.2 Attributes 

7.12.23.2.1 align : StrucDoc.Align: The text alignment that applies within the cell. 

If populated, the value of this attribute shall be taken from one of these values:  

StrucDoc.CellAlign Enumeration 

1 left left 
The content is left aligned. This long paragraph 
serves as an example of left aligned content in a 
table cell. 

1 centre centre 
The content is centre aligned. This long 
paragraph serves as an example of centre 
aligned content in a table cell. 

1 right right 
The content is right aligned. This long 
paragraph serves as an example of right aligned 
content in a table cell. 

1 justify justify 
The content is justified. This long paragraph 
serves as an example of content that is justified 
in a table cell. 

1 char char 
align=char aligns a cell's contents on the 
character given in the char attribute.  

The default value is left. 

7.12.23.2.2 char : String: The character on which to align cells if align is set to char. The default value for the 
CHAR attribute is the decimal point of the current language – a fullstop in English. 

7.12.23.2.3 charoff : StrucDoc.Length: When present, this attribute specifies the offset to the first 
occurrence of the alignment character on each line. If a line doesn‘t include the alignment character, it should 
be horizontally shifted to end at the alignment position. Information Processing Entities shall not be required to 
support this attribute. 

7.12.23.2.4 valign : StrucDoc.VAlign: The vertical alignment that applies within the cell. 

If populated, the value of this attribute shall be taken from one of these values:  

StrucDoc.VAlign Enumeration 

1 top top 
The content is aligned with the top of the cell as 
shown in the caption column. 

1 middle middle 
The content is aligned with the bottom of the cell 
as shown in the caption column. 

1 bottom bottom 
The content is aligned with the bottom of the cell 
as shown in the caption column. 

1 baseline baseline 

All cells in the same row as a cell whose align 
attribute has this value should have their textual 
data positioned so that the first text line occurs 
on a baseline common to all cells in the row. 
This constraint does not apply to subsequent 
text lines in these cells 

The default value is top. 



ISO/FDIS 21090:2009(E) 

156 © ISO 2009 – All rights reserved 

 

7.12.24 StrucDoc.TCell 

7.12.24.1 Description 

Specializes StrucDoc.TableItem. 

A cell in a table – may be either a normal cell or a header cell. 

7.12.24.2 Attributes 

7.12.24.2.1 abbr : String: This attribute should be used to provide an abbreviated form of the cell‘s content, 
and may be rendered by user agents when appropriate in place of the cell‘s content. Abbreviated names 
should be short since user agents may render them repeatedly. 

7.12.24.2.2 axis : String: This attribute may be used to place a cell into conceptual categories that can be 
considered to form axes in an n-dimensional space. User agents may give users access to these categories 
(e.g., the user may query the user agent for all cells that belong to certain categories, the user agent may 
present a table in the form of a table of contents, etc.). Please consult the HTML specification for more 
information. The value of this attribute is a comma-separated list of category names 

7.12.24.2.3 headers : Set(String) «XMLIDREF»: This attribute specifies the list of header cells that provide 
header information for the current data cell. The value of this attribute is a space-separated list of ID 
references to header cells; those cells must be named by setting their id attribute. Authors generally use the 
headers attribute to help non-visual user agents render header information about data cells (e.g., header 
information is spoken prior to the cell data), but the attribute may also be used in conjunction with style sheets. 
See also the scope attribute. 

Refer to Clause A.2 for the meaning of the XMLIDREF stereotype. 

7.12.24.2.4 scope : StrucDoc.CellScope: This attribute specifies the set of data cells for which the current 
header cell provides header information. This attribute may be used in place of the headers attribute, 
particularly for simple tables. 

This attribute shall only be populated for header cells. 

If populated, the value of this attribute shall be taken from one of these values:  

StrucDoc.CellScope Enumeration 

1 row row 
The current cell provides header information for the 

rest of the row that contains it. 

1 col col 
The current cell provides header information for the 

rest of the column that contains it. 

1 rowgroup rowgroup 
The header cell provides header information for the 

rest of the row group that contains it. 

1 colgroup colgroup 
The header cell provides header information for the 

rest of the column group that contains it. 

The default value is Col 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 157 
 

7.12.24.2.5 rowspan : Integer: The number of rows that this cell spans. Default value is 1. 

7.12.24.2.6 colspan : Integer: The number of columns that this cell spans. Default value is 1. 

7.12.24.3 Associations 

7.12.24.3.1 parts : StrucDoc.CMGeneral[0..* ordered] «Anonymous»: The contents of the footnote. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.24.4 Invariants 

 tables are not allowed to nest directly. 

OCL for Invariants: 

    inv "no nested tables": parts.forAll(t | t.table.oclIsUndefined) 

7.12.25 StrucDoc.TRow 

7.12.25.1 Description 

Specializes StrucDoc.TableItem. 

A Row in a table. 

7.12.25.2 Associations 

7.12.25.2.1 parts : Sequence(StrucDoc.TRowPart) «Anonymous»: The contents of the row. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.25.3 Invariants 

 at least one row part shall be provided. 

OCL for Invariants: 

  inv "must have at least one item": parts->notEmpty 

7.12.26 StrucDoc.TRowPart 

7.12.26.1 Description 

Stereotype: «Choice». 

Content model that allows cells (td) or header cells (th). The choice stereotype denotes that exactly one of the 
attributes shall have a value. The other shall be null. 



ISO/FDIS 21090:2009(E) 

158 © ISO 2009 – All rights reserved 

 

7.12.26.2 Attributes 

7.12.26.2.1 td : StrucDoc.TCell: A cell in a table. 

7.12.26.2.2 th : StrucDoc.TCell: A header cell in a table. 

NOTE Header cells are sometimes rendered differently, such as using bold, and may be repeated after page breaks. 

7.12.27 StrucDoc.TRowGroup 

7.12.27.1 Description 

Specializes StrucDoc.TableItem. 

A grop of rows – may be used to associate consistent styling across a group of rows. 

7.12.27.2 Attributes 

7.12.27.2.1 tr : Sequence(StrucDoc.Trow): The rows in the group. 

7.12.27.3 Invariants 

 at least one row must be provided. 

OCL for Invariants: 

  inv "must have at least one item": tr->notEmpty 

7.12.28 StrucDoc.ColItem 

7.12.28.1 Description 

Abstract. Specializes StrucDoc.TableItem. 

Abstract ancestor for common properties of col and colgroup. 

7.12.28.2 Attributes 

7.12.28.2.1.1 span : Integer: The number of columns this column definition spans. Default value is 1. 

7.12.28.2.1.2 width : StrucDoc.Length: The length for the column. 

7.12.29 StrucDoc.Col 

7.12.29.1 Description 

Specializes StrucDoc.ColItem. 

Applies a consistent style to every cell in a column. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 159 
 

7.12.30 StrucDoc.ColGroup 

7.12.30.1 Description 

Specializes T+. 

Applies a consistent style to every cell in a group of columns. 

7.12.30.2 Associations 

7.12.30.2.1 col : StrucDoc.Col[0..* ordered]: The columns in this group. 

7.12.30.3 Invariants 

 at least one column must be provided. 

OCL for Invariants: 

  inv "must have at least one item": col->notEmpty 

7.12.31 StrucDoc.Table 

7.12.31.1 Description 

Specializes StrucDoc.Captioned. 

A table. May have a caption, and shall have at least one row. A table may have optional header and footer 
rows. All rows are defined in groups. A table may also have col and colgroup elements to define styles for 
columns. 

7.12.31.2 Attributes 

7.12.31.2.1 summary : String : This attribute provides a summary of the table‘s purpose and structure for 
user agents rendering to non-visual media such as speech and Braille. This is different from the caption in that 
it must be plain text, and it is usually longer. 

7.12.31.2.2 width  : StrucDoc.Length : This attribute specifies the desired width of the entire table and is 
intended for visual user agents. 

The rules described in the html specification for table width calculations apply to the tables described here. 

7.12.31.2.3 border  : StrucDoc.Length : The width of the border. 

7.12.31.2.4 frame  : StrucDoc.Frame : This attribute specifies which sides of the frame surrounding a table 
will be visible (i.e. which borders are visible). 



ISO/FDIS 21090:2009(E) 

160 © ISO 2009 – All rights reserved 

 

If populated, the value of this attribute shall be taken from one of these values: 

StrucDoc.Frame Enumeration 

1 void void No sides. 

1 above above The top side only. 

1 below below The bottom side only. 

1 hsides hsides The right and left sides only. 

1 lhs lhs The left-hand side only. 

1 rhs rhs The right-hand side only. 

1 vsides vsides The top and bottom sides only. 

1 box box All four sides. 

1 border border All four sides. 

The default value is void. 

7.12.31.2.5 rules  : StrucDoc.Rules : This attribute specifies which rules (i.e. borders) will appear between 
cells within a table. The rendering of rules is user agent dependent. 

If populated, the value of this attribute SHALL be taken from one of these values: 

StrucDoc.Rules Enumeration 

1 none none No rules. 

1 groups groups 
Rules will appear between row groups  
and column only 

1 rows rows Rules will appear between rows only 

1 cols cols Rules will appear between columns only 

1 all all Rules will appear between all rows and columns 

The default value is none. 

7.12.31.2.6 cellspacing  : StrucDoc.Length : This attribute specifies how much space the user agent should 
leave between the left side of the table and the left-hand side of the leftmost column, the top of the table and 
the top side of the topmost row, and so on for the right and bottom of the table. The attribute also specifies the 
amount of space to leave between cells. 

7.12.31.2.7 cellpadding  : StrucDoc.Length: This attribute specifies the amount of space between the 
border of the cell and its contents. If the value of this attribute is a pixel length, all four margins should be this 
distance from the contents. If the value of the attribute is a percentage length, the top and bottom margins 
should be equally separated from the content based on a percentage of the available vertical space, and the 
left and right margins should be equally separated from the content based on a percentage of the available 
horizontal space. 

NOTE Consult the HTML specification for further information. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 161 
 

7.12.31.3 Associations 

7.12.31.3.1 thead : TRowGroup: The optional group of rows that defines the header for the table. 

7.12.31.3.2 tfoot : TRowGroup: The optional group of rows that defines the footer for the table. 

7.12.31.3.3 tbody : TrowGroup[0..* ordered]: The optional group of rows that defines the body of the table. 

7.12.31.4 Invariants 

 at least one row shall be provided. 

OCL for Invariants: 

  inv "must have at least one row": thead.tr->count + tfoot.tr->count 

        + tbody.tr->count > 0 

7.12.32 SD.TEXT 

7.12.32.1 Description 

Specializes ANY. 

A definition of structured text that can be used in healthcare. 

The structured text is based on an XHTML-like arrangement that ensures the text is properly marked up with 
semantics, and provides a common base line for implementation in healthcare. 

The type SD.TEXT is also known as StrucDoc.Text (for legacy reasons). 

7.12.32.2 Associations 

7.12.32.2.1 base : StrucDoc.Base[1..1] «Anonymous»: basic identification and styling attributes. 

7.12.32.2.2 parts : StrucDoc.CMGeneral[0..* ordered] «Anonymous»: The contents of the structured text. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.32.3 Equality 

Two SD.TEXT values are equal if they are not nullFlavored and have content (language, styleCode, and 
parts). 

7.12.32.4 Invariants 

 a non-null SD.TEXT shall have some parts. 

OCL for invariants: 

 inv "value if not nullFlavored": 

             isNotNull implies parts->count > 0 

 



ISO/FDIS 21090:2009(E) 

162 © ISO 2009 – All rights reserved 

 

7.12.32.5 Operations 

7.12.32.5.1 asED() : ED: The SD.TEXT as an ED. The parts become the value of the ED.xml attribute 
following the XML representation rules laid out in Annex A. The language is populated from base.language, 
the mediaType is populated from base.language, the mediaType is "text/x-hl7-text+xml", the charset is 
determined the context in which the SD.TEXT occurs, and the other properties of the ED result are null. 

7.12.33 SD.TITLE 

7.12.33.1 Description 

Specializes ANY. 

A definition of structured title that can be used in healthcare. 

The structured text is based on the structured text definition, but only a narrow set of features can be used, 
consistent with a title rather than a general document. 

The type SD.TITLE is also known as StrucDoc.Title (for legacy reasons). 

7.12.33.2 Associations 

7.12.33.2.1 base : StrucDoc.Base[1..1] «Anonymous»: basic identification and styling attributes. 

7.12.33.2.2 parts : StrucDoc.CMTitle[0..* ordered] «Anonymous»: The contents of the title. 

Refer to Clause A.2 for the meaning of the Anonymous stereotype. 

7.12.33.3 Equality 

Two SD.TITLE values are equal if they are not nullFlavored and have content (language, styleCode, and 
parts).  

7.12.33.4 Invariants 

 a non-null SD.TITLE shall have some parts. 

OCL for invariants: 

 inv "value if not nullFlavored": 

             isNotNull implies parts->count > 0 

 

7.12.33.5 Operations 

7.12.33.5.1 asED() : ED: The SD.TITLE as an ED. The parts become the value of the ED.xml attribute 
following the XML representation rules laid out in Annex A. The language is populated from base.language, 
the mediaType is  is populated from base.language, the mediaType is "text/x-hl7-title+xml", the charset is 
determined the context in which the SD.TITLE occurs, and the other properties of the ED result are null. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 163 
 

Annex A 
(normative) 

 
XML representation 

A.1 Introduction 

Due to the ubiquitious use of XML as an exchange format, this International Standard provides a normative 
XML format for use when instances of these datatypes are represented in XML. An information processing 
entity shall specify to what degree this format is adopted or not when claiming conformance to this 
International Standard. 

The XML representation is created by a simple algorithm described below, and is intended to provide direct 
support for both schema validation and schema-based software development tools. A full schema for the XML 
representation is provided in Annex E. Although the schema is only informative, an information processing 
entity that claims conformance with this International Standard shall produce instances that are valid with 
respect to the schema, though validity with respect to the schema is not sufficient to claim that conformance 
has been demonstrated. 

A.2 Rules for XML representation 

 Any valid XML charset can be used as long as as it is consistent with the string character set as 
discussed in 6.7.5. In particular, full round-trip encoding between the string character set and the XML 
charset is required. 

 xml:lang shall be ignored. For content to which language applies, the Data.language or ST.language 
attribute shall be used instead. 

 All elements shall be in some namespace, and the namespace shall be defined in the conformance 
statements of information processing entities that claim conformance with this International Standard. 
This International Standard reserves the namespace "uri:iso.org:21090" for direct applications of these 
datatypes such as testing environments. 

 The xml representation (and xml schema) for a type is derived algorithmically from the UML 
representation. 

 Each type that specializes ANY is represented by an XML element. 

 UML attributes with a stereotype of binary on their type are represented as an element with text content; 

 the format of the text in the element is the format specified for the type base64Binary in W3C schema. 

 UML attributes with a stereotype of XML on their type are represented as XML with a single XML element 
contained; 

 the name of the XML element is the name of the UML attribute; 

 this is the equivalent of the schema type anyType. 

 UML attributes with a stereotype of XMLID are represented as an XML ID atttribute. The name of the 
attribute is the same is the UML attribute. 



ISO/FDIS 21090:2009(E) 

164 © ISO 2009 – All rights reserved 

 

 UML attributes with a stereotype of XMLIDREF are represented as an XML IDREF atttribute. The name 
of the attribute is the same is the UML attribute. If the type of the UML attribute is a UML collection, then 
the attribute will be a space delimited list of XML IDREF tokens. 

 UML attributes with a stereotype of XMLText are represented as XML text content. The may only be one 
UML attribute with this stereotype on a class. 

 UML attributes with a type derived from classifier are represented as an element; 

 the name of the XML element is the name of the UML attribute; 

 the format of the element is that specified for the type following these rules recursively. 

 UML attributes with a type derived from a UML primitive class are represented as an attribute; 

 the name of the XML attribute is the name of the UML attribute; 

 the attribute has no namespace; 

 the content of the attribute shall conform to the W3C schema type that matches the UML type as 
specified in the table in Clause A.4; 

 if the value of the attribute is equal to its default value, the attribute does not need to be represented 
in the XML; the default value for attributes is null unless specified otherwise in the UML diagrams. 

 UML attributes with a type derived from a collection of UML classifiers are represented by a sequence of 
XML elements; 

 the name of the elements is the name of the attribute; 

 there is one element for each item in the collection; 

 the format of the element is that specified for the type following these rules recursively. 

 UML attributes with a type derived from a collection of UML primitives are represented by an XML 
attribute; 

 the name of the XML attribute is the name of the UML attribute; 

 the attribute has no namespace; 

 the content of the attribute must be a space separated list of tokens that conform to the schema type 
that matches the UML type as specified in the table in Clause A.4. 

 UML associations with a stereotype of "Anonymous" are not represented by any element at all. 

 The xsi:nil attribute shall not be used in the XML representation of a value. If a UML attribute is not 
present, it should not be represented in the XML. 

 If the type being represented has a type other than that specified in the UML (i.e. a specialization), then 
the xsi:type attribute of the element shall be provided. xsi:type may be used at any time. 

 The schema type name of a type is the same as its UML name, except for bound parameterized classes. 

 For bound parameterized classes (where the class has type parameters) then the actual parameters 
bound to the class are added to the type using _ as a separator. i.e. DSET(AD) becomes DSET_AD. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 165 
 

 If an attribute is contained by reference, then this is represented using XML ID/IDREF attributes. The 
reference must be contained within same document. The attribute itself may make other constraints about 
where the target of the reference might be found. The reference may be a forward reference. 

A.3 Data type flavours in XML 

Data type flavours are used to signal the imposition of one or more sets of constraints. The flavours may be 
applied explicitly in the instance of the data type using the flavour property, or it may be applied implicitly by 
some other knowledge. However flavours are applied, they are not treated as types in the XML, as more than 
one flavour may be applied to a type, and XML Schema has no framework for treating types like this. 

Instead, the constraints associated with each flavour defined in this International Standard are represented as 
schematron rules to the degree that they can be captured as XPath rules, and are represented as such in the 
schema. While it is not required that flavours not defined in this International Standard be represented as 
schematron, the patterns laid down in this schema may be re-used by other information processing entities 
when using other data type flavours.  

A.4 UML/XML schema type mapping 

This table lists the mapping from UML primitive types to XML schema types: 

UML primitive type XML Schema Type 

Boolean boolean 

Integer integer 

Decimal decimal 

String string 

If the UML type has a stereotype Uri, then the W3C schema type anyURI is used instead of string. 

A.5 XML Schema 

An XML schema can be derived based on the mapping rules detailed above. A copy of one such schema is 
found in Annex D. This schema can be used to validate whether XML instances conform to the some of the 
rules laid out in this International Standard. The schema includes schematron statements that represent some 
of the OCL constraints in this International Standard. 

The schema cannot provide full validation. The fact that any particular instance passes validation against this 
schema using a schema validation tool does not prove that the instance is conformant with regards to this 
International Standard. Applications will have to undergo further data validation to check data intregrity rules 
that are not represented in the schema before conformance can be assumed. If an instance fails to pass 
validation using a schema tool, and it is not due to a bug or missing feature in the schema validation tool, then 
the instance is not conformant to this International Standard. 

It is the responsibility of any importing schema to assign a namespace to the types declared in this schema. 
Any elements assigned types defined in this schema should not be declared as nillable. 



ISO/FDIS 21090:2009(E) 

166 © ISO 2009 – All rights reserved 

 

Annex B 
(normative) 

 
UML support types 

B.1 Introduction 

This annex declares some UML types that are needed to support the UML type declarations for the UML 
types above. See Figure B.1. 

 

Figure B.1 — UML support datatypes 

B.2 UML datatypes 

B.2.1 Octet 

Represents a number that can take values from 0-255 (also sometimes known as a byte). This is defined to 
allow a formal UML definition of binary. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 167 
 

B.2.2 Binary 

Represents a sequence of Octets. This type is specifically created to allow UML declarations to refer to binary 
content (also sometimes known as streams). 

This type has a stereotype <<Binary>> to assist with automated mappings to specific platforms, which 
generally provide specific types for dealing with binary content. 

B.2.3 Code 

A simple string that has a restricted set of possible values. Code is generally used where the code list is 
restricted by some external standard, such as an RFC. 

B.2.4 Uid 

A string that is an identifier, and therefore shall be either a string representation of an OID (see ISO/IEC 8824), 
a UUID (see Open Group, CDE 1.1 Remote Procedure Call specification, Appendix A), or a simple token 
taken from a list of controlled names for the context in which the Uid is used. 

Uids shall always be represented in uppercase, and Uid comparison is always case sensitive 

B.2.5 Uri 

A simple internet URL or URI. This is an extension of string but has a stereotype <<URI>> to assist with 
automated mappings to specific platforms, which may provide a specific type for dealing with binary content. 

B.2.6 XML 

A placeholder for any XML content. This is used in the data class to allow for either binary content or an XML 
object model. 

B.2.7 Decimal 

A floating point number with known precision. Operations on the floating point number shall be precision 
aware. This type does not map to the simple real type defined in the UML kernel or ISO/IEC 11404, as these 
are not precision aware. 

NOTE 1 One use of the decimal type in this International Standard is to store monetary amounts, which have well-
recognised special requirements for precision. 

NOTE 2 The precision is only the precision of a decimal digit representation, not the accuracy of the real number value. 
The purpose of the precision is to faithfully capture the whole information presented to humans, in a number. The amount 

of decimal digits shown conveys information about the uncertainty (i.e., precision and accuracy) of a measured value. 

The rules for which digits are significant are as follows: 

1) All non-zero digits are significant. 

2) All zeroes to the right of a significant digit are significant. 

3) When all digits in the number are zero the zero-digit immediately left to the decimal point is 
significant (and because of rule 2, all following zeroes are thus also significant). 

NOTE 3 These rules of significance differ slightly from the more casual rules taught at school. Notably trailing zeroes 

before the decimal point are consistently regarded significant here. Elsewhere, e.g., 2000 is ambiguous as to whether the 
zeroes are significant. This deviation from the common custom is warranted for the purpose of unambiguous 

communication. 



ISO/FDIS 21090:2009(E) 

168 © ISO 2009 – All rights reserved 

 

Examples for the Precision of Real Number Literals. 

Literal Number of significant digits 

2000 4 

2e3 
1 

used if one would naturally say "2000" but precision is only 1. 

0.001 4 

1e-3 
1 

use this if one would naturally say "0.001" but precision is only 1. 

0 1 

0.0 2 

0.1 2 

.1 2 

000.0 2 

0.00 3 

4.10 3 

4.09 3 

4.1 2 

The precision of the representation is independent from uncertainty (precision accuracy) of a measurement 
result. If the uncertainty of a measurement result is important, one should specify uncertain values as PPD or 
CIVL. 

The precision of the representation should match the uncertainty of the value. However, precision of the 
representation and uncertainty of the value are separate independent concepts. Refer to PPD<REAL> for 
details about uncertain real numbers. 

For example "0.123" has 3 significant digits in the representation, but the uncertainty of the value may be in 

any digit shown or not shown, i.e., the uncertainty may be 0.123  0.0005, 0.123  0.005 or 0.123  0.00005, 
etc. However, since the precision in the digit string is granular to 0.5 in the least significant digit, while 

uncertainty may be anywhere between these "grid lines", 0.123  0.005 would also be an adequate 
representation for the value between 0.118 and 0.128. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 169 
 

Annex C 
(informative) 

 
RM-ODP viewpoint mappings 

The reference model of open distributed processing (RM-ODP) is a joint effort by ISO/IEC and ITU-T which 
provides a co-ordinating framework for the standardization of open distributed processing (ODP). The RM-
ODP family of recommendations and International Standards defines essential concepts necessary to specify 
open distributed processing systems from five prescribed viewpoints and provides a well-developed 
framework for the structuring of specifications for large-scale, distributed systems. 

RM-ODP defines five viewpoints for describing a system. 

 the enterprise viewpoint, which is concerned with the purpose, scope and policies governing the 
activities of the specified system within the organization of which it is a part; 

 the information viewpoint, which is concerned with the kinds of information handled by the system and 
constraints on the use and interpretation of that information; 

 the computational viewpoint, which is concerned with the functional decomposition of the system into a 
set of objects that interact at interfaces – enabling system distribution; 

 the engineering viewpoint, which is concerned with the infrastructure required to support system 
distribution; 

 the technology viewpoint, which is concerned with the choice of technology to support system 
distribution. 

Though there is not a direct mapping between any of these five viewpoints and this datatype specification, 
there are conceptual similarities between these views and the datatype specifications. 

The HL7 V3 Abstract Data Types specification is conceptually similar to the information viewpoint: it is 
concerned with the kinds of information that can be handled, and constraints on the use and interpretation of 
the information. It is not directly concerned with computation questions that arise when systems are actually 
designed. 

This International Standard is conceptually similar to the computational view point: it is concerned with how to 
represent the informational view described in the HL7 V3 Abstract Data Types in a set of objects, and to deal 
with computational issues such as how null objects and null flavours interact with each other. 

This International Standard allows for tools to take the UML specifications and create genuine technology-
bound implementations, such as generated code in a particular computing language. These generated 
specifications relate to the technology and engineering viewpoints and their interface with the computational 
viewpoint. 



ISO/FDIS 21090:2009(E) 

170 © ISO 2009 – All rights reserved 

 

Annex D 
(informative) 

 
HL7 V3 Abstract Data Types mapping 

The HL7 V3 Abstract Data Types Specification (R2) describes the datatypes used by HL7 V3 in a purely 
semantic fashion. The datatypes are derived in a fashion that is completely independent of any other 
specification, in much the same fashion as ISO/IEC 11404 defines the general purpose datatypes. 

NOTE 1 Combined, the Abstract Data Types and this International Standard introduce some non-backwards 

compatible changes from R1 of the HL7 V3 datatypes. This issue is further discussed in the ISO 21090 Conformance 
Statement in the HL7 V3 Specification. 

This International Standard is an implementation of the HL7 V3 Abstract Data Types (R2). This UML diagram 
(Figure D.1) summarises the types defined in the HL7 V3 Abstract Data Types Specification 

 

Figure D.1 — Abstract data types summary 

NOTE 2 In this diagram, the HL7 Abstract Data Types are defined as interfaces. There is a custom stereotype used 

called ―mixin‖. A mixin interface acts like a parameterized interface, but rather than expressing properties of the type of the 
parameter, the interface itself extends the interface that it takes as a parameter. This is a technique that is not supported 

in many implementation technologies, and is also not directly supported in UML. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 171 
 

The following UML diagrams (Figures D.2 to D.11) describe how the ISO datatype classes implement the HL7 
V3 Abstract Data Types. 

 

Figure D.2 — Basic type mappings 

 

Figure D.3 — Collection type mappings 



ISO/FDIS 21090:2009(E) 

172 © ISO 2009 – All rights reserved 

 

 

 

Figure D.4 — Text type mappings 

 

Figure D.5 — Terminology type mappings 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 173 
 

 

Figure D.6 — Identification and location type mappings 

 

Figure D.7 — Name and address type mappings 



ISO/FDIS 21090:2009(E) 

174 © ISO 2009 – All rights reserved 

 

 

Figure D.8 — Basic quantity type mappings 

NOTE The QTY attribute expression comes from the EXPR<T> type, the attributes uncertainty and uncertaintyType 
come from the PPD<T> type, and the attribute uncertainRange comes from the URG<T> type. 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 175 
 

 

Figure D.9 — Quantity type mappings 



ISO/FDIS 21090:2009(E) 

176 © ISO 2009 – All rights reserved 

 

 

Figure D.10 — Quantity set type mappings 

 

Figure D.11 — Uncertainty set type mappings 



ISO/FDIS 21090:2009(E) 

© ISO 2009 – All rights reserved 177 
 

Annex E 
(informative) 

 
Schema for XML representation 

The schema will be posted to the ISO web site when this standard becomes normative (and this section will 
be rewritten accordingly). For the period of the FDIS, the schema can be found at  
http://svn.hl7.nscee.edu/svn/hl7v3/hl7v3/trunk/dt/iso/iso-21090-datatypes.xsd  
(and http://svn.hl7.nscee.edu/svn/hl7v3/hl7v3/trunk/dt/iso/iso-21090-datatypes-tester.xsd) 

http://svn.hl7.nscee.edu/svn/hl7v3/hl7v3/trunk/dt/iso/iso-21090-datatypes.xsd
http://svn.hl7.nscee.edu/svn/hl7v3/hl7v3/trunk/dt/iso/iso-21090-datatypes-tester.xsd


ISO/FDIS 21090:2009(E) 

178 © ISO 2009 – All rights reserved 

 

Bibliography 

[1] ISO 3166-1, Codes for the representation of names of countries and their subdivisions — Part 1: 
Country codes 

[2] ISO/IEC 11179 (all parts), Information technology — Metadata registries (MDR) 

[3] ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set 
(UCS) — Part 1: Architecture and Basic Multilingual Plane 

[4] ISO 13606 (all parts), Health informatics — Electronic health record communication 

[5] IETF RFC 2978 — IANA Charset Registration Procedures 

[6] OASIS CIQ — http://www.oasis-open.org/committees/ciq 


